
Scopes
On scope terminology
Some terminology needs to be centralized here relating to scopes. This is probably the most over-used
word in OAuth. In short, scopes are requests for either claims in various tokens or request for how to
process information. People use the term scope (for the request) interchangeably with the response to
the scope (properly called a claim). It does not help that there is also a claim labeled ascope in many
places (such as in a SciTokens), Scope requests refer to

• Metadata (about the user, asserted in the ID token)
 E.g. email, profile for a user’s email or eppn in the id token.

• Permissions (asserted in the access token if the format is JWT) These are vetted according to
the security policy for the client
 E.g. read:/igwn/data/2021 for access to a resource. These are usually of the form
action:path_to_resource

• Capabilities (asserted in the access token, usually vetted then passed along as is)
 E.g. compute.modify, mysql.read for use of a component (which may have its
 own access policies too). These are effectively flags – they are there or not.

• Processing directives which will be parsed as requests for specific actions, but are generally
not extensible (see below for definition).
 E.g. wlcg.capabilityset:/duneana which is a directive to a claim source about which set
of permissions, capabilities etc. to assert for the user.
E.g. igwn.robot:ligorobot which is a directive that the request should be processed as if
handled by a robot. This means the user starts the flow to be run as the robot on behalf of the
user, and the robot name (here ligorobot) has its “user” information retrieved and returned in
the tokens along with assertions about the user.

Directives and capabilities may also have side-effects such as adding claims to the identity token and
refresh tokens as well.

I propose they replace “scope” with the more vivid term, "kitchen-sink," but this does not seem to be
catching on.

Semantics of scopes

Aside from the function, there is the practical issue of what the semantics are.

• uri-scopes: Scopes of the form scheme : path. E.g. storage.create:/home/users/bob

• simple scopes: Scopes that are not uris. E.g. compute.create. These are effectively opaque
strings.1 They cannot be up or down scoped.

Uri-scopes may then be extensible, i.e., the additional path components may be added. This is termed
sub or downscoping too (see note below). It is policy as to what is fixed or not and there is no a priori
method to determine which is which. Since URIs have a regular format and are easily parsed, many
institutions use them for everything, which is a good idea.

Handy table relating these concepts:

fixed extensible

uri Y Y

simple Y N

Subscope, downscope, scope reduction

Many people also refer to subscopes as scope reduction and refer to super scopes “upscopes” and
subscopes as “downscopes”. The semantics for dealing with subscopes is by path component, so
read:/home/jeff1 and read:/home/jeff are considered unrelated – not super or sub scopes of each
other, but read:/home/jeff/data is a sub-scope of the latter. Subscopes policies are often applied in
certain classes of tokens, such as those relating to file permissions, if at all possible.

The policy document
How scopes are vetted i.e. interpreted by the server is referred to as the policy. It is critical that every
client that needs one (not all do!!) have a policy document which is a human readable, computer
language neutral explanation of how to process requests. In practice, a very large number of mishaps
happen if there is no such document because as systems evolve, extensions are required which are not
necessarily consistent nor compatible with each other. Then it may happen that the most critical piece
of an organization’s function – how information and shared and flows – breaks or is otherwise less than
reliable. Far too many assume that a clearly written policy need not be done only to be very surprised
later. Every interaction with the server is an interaction with its policies.

Standard user metadata scopes supported in OA4MP
OIDC has a standard set of scopes for the ID token, aka user metadata encoded as a JWT. A quick table
of these is useful. When a client is created, these are listed as to whether or not the client can request
them. For instance, if a public client (so it just wraps if the login worked), you would only want an
openid scope rather than a full set of user metadata. If the client is allowed to request the openid scope,
then it is assumed to want OIDC compliance.

1 Properly they should be a type of URN, in that they name something and are immutable, but they do not follow that
syntax. Think of house numbers. A house number is a number, but nobody is going to start adding them because it is
understood they are not for computation. So the policy regarding these is that they are immutable. This adds another
layer of confusion since they look as if you should do something with them but you will never figure that out without
context.

https://oa4mp.org/pdf/policies.pdf

Scope Claims Description

openid sub
acr
amr
iat
nbf
exp

auth_time

The subject claim is usually the
login name of the user.

address address
address_verified

profile name
nickname
first_name

middle_name
last_name

preferred_name
given_name

display_name

Not all of these may be asserted
by the IDP or elsewhere. If a
claim is missing, OA4MP did not
get it.

email email
email_verified

The single email address
preferred by the user.

phone phone
phone_verified

org.oa4mp:userinfo affiliation
cert_subject_dn

entitlement
eppm
eptid

eduPersonAssurance
eduPersonEntitlement

eduPersonOrcid
idp

idp_name
isMemberOf2

itrustuin
oidc

openid
ou

pairwise_id
subject_id
uidNumber

voPersonExternalID
voPersonID

cn
dn
sn

This scope requests that if the
IDP asserts any of these, they will
be asserted as claims. If the IDP
sends other assertions about the
user, they will not be forwarded.
For that, use the more permissive
org.cilogon.userinfo scope.

2 IsMemberOf can only be asserted if there is some way for OA4MP to get the groups of the user. This is normally set in
the policy document.

org.cilogon.userinfo (anything the IDP asserts) This is much more permissive
and will return everything the
IDP asserts, including the list for
org.oa4mp:userinfo. If both of
these scopes are present, this one
is honored

edu.uiuc.ncsa.myproxy.getcert -- This is presented to the getcert
endpoint which returns an X 509
chain of certificates, if and only
if OA4MP is setup to issue X 509
certificates (which is rare, but
possible). Note that the
cert_subject_dn claims will only
be available if this scope is
supported.

Key:

Scope is the scope you pass in,
Claims are the claims asserted in the ID token,
Description is just a note about these.

Do note that scopes are usually consumed and not returned in any token.

Access token scopes
There are various standards for acccess tokens which try to capture these, in particular the WLCG
specification and the SciTokens specification. Refer to those documents. The other major specification,
RFC 9068 does not specify scopes, so you can set those however you like.

Appendix. Sample tokens
These are given with the request parameters that result in them. Note that the claims are standard:

• aud The entity that is the intended audience, i.e. recipient of this token. Most usually that is
the client or the resource server.

• sub The entity that is the subject of the token. The claims in the token are assertions about this
subject

• iss The URI of the service that created i.e. issued the claim

• jti is simply a unique identifier and every token gets one

• iat (issued at) the timestamp in seconds at which the token was issued

• nbf (not valid before) the timestamp in seconds at which the token becomes valid.

• exp (expiration) the timestamp in seconds at which the token becomes invalid.

https://www.rfc-editor.org/rfc/rfc9068
https://scitokens.org/technical_docs/Claims
https://zenodo.org/records/3460258
https://zenodo.org/records/3460258

Note that the tokens are all JSON, but to facilitate reading, most of the syntax is elided. If a value is too
long to display as a single line, line breaks are added for readability. The aim is to let you parse the
token as much as possible in a single glance.

ID token
Requested ID token scopes: openid profile email org.oa4mp:userinfo

The server is configured to assert a custom claim named ϑ which is the arcsine of iat/exp. Why? Just
showing off. This was done with scripting and as we said, if you can articulate it in a policy OA4MP
can very probably do it.

 affiliation : staff@ncsa.illinois.edu;
 employee@ncsa.illinois.edu;
 member@ncsa.illinois.edu
 aud : oa4mp:/noms-wg/rfc9068
 auth_time : 1732892682
 email : gaynor@illinois.edu
 exp : 1732893587
 iat : 1732892687
 idp : http://github.com/login/oauth/authorize
 idp_name : GitHub
 isMemberOf : [CO:COU:math:members:active,
 CO:COU:noms:members:active,
 CO:COU:staff:members:active]
 iss : https://oa4mp.oxbridge.edu/noms
 jti : https:// oa4mp.oxbridge.edu /idToken/
 2b37d85f93bfa5a8d35b87345d36352b/1732892682654
 nbf : 1732892687
 nonce : KEOIIT4G382rS3HN-EGO8G8ZaF-4K9lSG0QG_mzX60w
 oidc : 2953537
 sub : d3668a736945b1081e9b5fc5387a3867fe80ca44
 ϑ : 1.56977714812856

Access token
In this case, the type of the token is an RFC 9068 token and the scopes are for permissions to run a
database engine. The request contains

Requested access token scopes: db:init:table db:create:table

and based on the user’s permissions (gotten from a 3rd Party), the resulting permissions are for the
database mysql and the table the user can manage is called “users”. The resource server knows how to
use these scopes.

 aud : https://math.oxbridge.edu/noms-wg
 auth_time : 1732892682
 client_id : oa4mp:/noms-wg/rfc9068
 exp : 1732892987
 iat : 1732892687
 iss : https://oa4mp.oxbridge.edu/noms
 jti : https:// oa4mp.oxbridge.edu / 3ecfdec7abf18b0b1c3aefa6439d5f?
 type=accessToken&
 ts=1732892687204&

https://localhost:9443/oauth2/
https://cilogon.org/bnlsdcc
https://localhost:9443/oauth2/
https://cilogon.org/bnlsdcc
db:create:table
db:init:table
https://localhost:9443/oauth2/idToken/
https://cilogon.org/bnlsdcc
https://localhost:9443/oauth2/idToken/
https://cilogon.org/bnlsdcc
mailto:employee@ncsa.illinois.edu
mailto:staff@ncsa.illinois.edu

 version=v2.0&
 lifetime=300000
 nbf : 1732892682
 scope : mysql:init:users mysql:create:users
 sub : d3668a736945b1081e9b5fc5387a3867fe80ca44

Refresh token
No parameters sent, this is simply a generic unsigned token. All that matters in most cases is that it
comes as the response from the server and is a JWT.

 aud : oa4mp:/noms-wg/rfc9068
 exp : 1732893587
 iat : 1732892687
 iss : https://oa4mp.oxbridge.edu/noms
 jti : https:// oa4mp.oxbridge.edu /5e5fbfb609d08f83a3da127d399 ?
 type=refreshToken&
 ts=1732892687204&
 version=v2.0&
 lifetime=900000
 nbf : 1732892682

Since the initial request that starts the flow must contain all of the scopes, the actual complete scope
parameter (note it is blank delimited!) is

openid profile email org.oa4mp:userinfo db:init:table db:create:table

db:create:table
db:init:table
https://localhost:9443/oauth2/5e5fbf4bab9b609d08f83a3da127d399
https://cilogon.org/bnlsdcc
https://localhost:9443/oauth2/5e5fbf4bab9b609d08f83a3da127d399
https://cilogon.org/bnlsdcc

Appendix. The policy for this client
The following is the policy document that produces the above tokens. It is included to form a more
complete example.

Prolog

• Point of contact for this policy is finn.mccool@math.oxbridge.edu.

• Client id : oa4mp:/noms-wg/rfc9068

• Issuer is : https://oa4mp.oxbridge.edu/noms and is a virtual issuer

• Resource server : https://math.oxbridge.edu/noms-wg

• Device and authorization code flows are supported

Authorization

• The allowed IDP list for this client should only include:
• Oxbridge university

• CILogon should be used for login.
• The CILogon unique identifier (uid) should be returned
• User groups are found in LDAP ldap-math.oxbridge.edu with search base

 ou=people,o=Oxbridge,o=CO,dc=dev,dc=math,dc=edu
under the CILogon uid.

• Tokens can only be obtained by members in the group CO:COU:math:members:active or
CO:COU:noms:members:active. A rejection here results in user not found error. (See below)

• Identity linking is done using the uid resolved against the LDAP server in the voPersonID
assertion there. A failure to find the user there results in a linking error (See below)

ID tokens

• Subject: sha1sum of CILogon uid. This is to conform to anonymization requirements.
• Allowed scopes are any subset of

openid
email
profile
org.cilogon.userinfo

• Other claims:The groups from LDAP are returned in the isMemberOf claim as an array of
strings.

https://oa4mp.oxbridge.edu/noms

Access tokens

• Tokens are RFC 9068

• Lifetime: 4 hours.
• Subject: sha1sum of CILogon uid. This is to conform to anonymization requirements.
• Audience: Should be set to the resource server URI or any the client passes in during the initial

request.
• Other claims: If users are in the group CO:COU:noms:members:active , then the access token

must assert the claim “grant_id” with the value “NSF-123456”.
• Allowed scopes are

db:init:table
db:create:table
db:delete:table
db:modify:table

• Allowed database permissions are found in LDAP, ldap-math.oxbridge.edu with search base
ou=services,o=Oxbridge,o=CO,dc=dev,dc=math,dc=edu

under the CILogon uid. The database and table will be set from this.

Refresh tokens

• JWT format

• Lifetime: 7 days

• No subject

Error handling

Authorization denied handling

• Users that are denied authorization at the issuer should be redirected to the help page located at
https://math.oxbridge.edu/registry-login-error.php

• The following entries should be sent
• error

• Same as would normally go to client callback uri
• error_description

• Same as would normally go to client callback uri
• service_id

• “no_auth”
No linking handling

• Users that are authorized but for whom there is no identity linking at the issuer should be
redirected to the help page located at https://math.oxbridge.edu/registry-linking.php

• The following entries should be sent
• error

• Same as would normally go to client callback uri
• error_description

https://www.sdcc.bnl.gov/registry-login-error.php
https://www.sdcc.bnl.gov/registry-login-error.php
db:modify:table
db:delete:table
db:create:table
db:ini:sdb:init:table

• Same as would normally go to client callback uri
• service_id

• “no_linking”

Epilog

The sub in this case is the internal CILogon identifier for the user. Since that is guaranteed unique,
many clients (such as this one) use that for identifying their users.
The issuer is the OA4MP server. In this case, it is configured as a virtual issuer, with its own set of
signing keys, for the NOMS group. The resource server is the server that interprets the access token
and serves/manages resources (such actually copying a file or in this case, hosting a database engine).

The authorization policy allows for users who are not at the institution (oxbridge.edu) to use GitHub as
an alternate login and link their account to their set of permissions. It does this by handing off the logon
to CILogon (which, incidentally, is an OA4MP server too!). This is why this server uses the CILogon
user id as the subject claim – it denotes the user uniquely across logins. Linking is managed by
Oxbridge and recorded in their LDAP.

	On scope terminology
	Semantics of scopes
	Subscope, downscope, scope reduction

	The policy document
	Standard user metadata scopes supported in OA4MP
	Access token scopes
	Appendix. Sample tokens
	ID token
	Access token
	Refresh token

	Appendix. The policy for this client

