
Scopes
On scope terminology
Some terminology needs to be centralized here relating to scopes. This is probably the most over-used
word in OAuth. In requests, scopes are requests for claims in various tokens. People use the term
scope (for the request) interchangeably with the response to the scope (properly called a claim). It does
not help that the claim itself is labeled as scope in many places (such as in a SciToken), In tokens,
scope requests refer to

• metadata
 E.g. email, profile for a user’s email or eppn in the id token.

• access permissions
 E.g. read:/igwn/data/2021 for access to a resource. These are usually of the form
action:path_to_resource

• capabilities
 E.g. compute.modify, mysql.read for use of a component (which may have its
 own access policies too). These are effectively flags – they are there or not.

• processing directives which will be parsed as requests for specific actions, but are generally
not extensible (see below for definition).
 E.g. wlcg.capabilityset:/duneana which is a directive to a claim source about which
permissions, capabilities etc. to assert for the user.
E.g. igwn.robot:ligorobot which is a directive that the request should be processed as if
handled by a robot. This means the user starts the flow to be run as the robot, and the robot
name (here ligorobot) has its “user” information retrieved and returned in the tokens.

Directives and capabilities may also have side-effects such as adding claims to the identity token and
refresh tokens as well.

I propose they replace “scope” with the more vivid term, "kitchen-sink," but this does not seem to be
catching on.

Basic categories of templates
In any case there are two broad categories of scope templates,

• fixed. These include all directives, capabilities and user meta data. These do not change and
may not be down/up-scoped (see below for definition of this term).

• extensible. generally these are uris. These include all permissions. These have paths and may
have additional path components added.

Semantics of scopes

Aside from the function, there is the practical issue of what the semantics are.

• uri-scopes: Scopes of the form scheme : path. E.g. storage.create:/home/users/bob

• simple scopes: Scopes that are not uris. E.g. compute.create. These are effectively opaque
strings.1

Uri-scopes may then be extensible. It is policy as to what is fixed or not and there is no a priori method
to determine which is which. Since URIs have a regular format and are easily parsed, many institutions
use them for everything, which is a good idea.

Handy table relating these concepts:

fixed extensible

uri Y Y

simple Y N

Subscope, downscope, scope reduction

Many people also refer to subscopes as scope reduction and refer to super scopes “upscopes” and
subscopes as “downscopes”. The semantics for dealing with subscopes is by path component, so
read:/home/jeff1 and read:/home/jeff are considered unrelated – not super or sub scopes of each
other, but read:/home/jeff/data is a sub-scope of the latter. Subscopes policies are often applied in
certain types of tokens if at all possible.

Initial requests

In the authorization code flow, requests for scopes are allowed. This means that a superscope is sent
and the server resolves it to the actual scope that may be requested.

Example

The initial request for a service include the scopes

read:

write:

The response includes (for instance) the scopes

read:/home/user/bob
read:/home/lsst/data
read:/home/ligo/data

write:/home/user/bob

1 Properly they should be a type of URN, in that they name something and are immutable, but they do not follow that
syntax. Think of house numbers. A house number is a number, but nobody is going to start adding them because it is
understood they are not for computation. So the policy regarding these is that they are immutable. This adds another
layer of confusion since they look as if you should do something with them but you will never figure that out without
context.

Indicating that these are the configured templates for these users. In the next leg of OAuth, the user can
subscope these.

E.g. of an extensible uri-scope:

scope = read:/home/jeff
superscope = read: or read:/home
subscope = read:/home/jeff/other_stuff

E.g. of fixed uri-scope
mysql:/read

Attempts to subscope it should probably be flagged as an error.

A complete example, modeled after a real configuration.

Scopes in the initial request

So a typical set of scopes in an initial request may look like this (each one is on a separate line, but in
the request itself they would be separated by blanks e.g. “openid email profile ...”

Scope Type Comment
openid MD Marks protocol as open id
email MD request for user email
profile MD request for user profile (such as user preferred name)

org.cilogon.userinfo MD Gets additional metadata, such as user EPPN,
affiliation

wlcg.capabilityset:/bgsu DIR Request templates for this institution based on (here)
user IDP, affiliation, roles and group membership

wlcg.groups:/bgsu DIR Request roles and group membership based on IDP
EPPN

compute.cancel CAP Specific request
compute.create CAP “
compute.delete CAP “

storage.read:/bgsu/users/bob/
data

P “

storage.create:/bgsu/users/
bob/data

P “

storage.read:/home/lsst/data/
2022-12

P “

MD = user meta data DIR = directive CAP = capability P = permission

What does all this mean? For one thing, user metadata is used with directives to search for the groups
and other capabilities for a specific user (in this case, in an LDAP over a secure connection).

Templates (from LDAP)

Based on policies set by the institution, An initial lookup for groups and roles is done, then based on
that the actual set of templates is returned for the capabilities and permissions:

compute.cancel
compute.create
compute.modify
storage.read:/bgsu/${user}
storage.write:/bgsu/${user}
storage.create:/bgsu/${user}
storage.read:/home/lsst/data
storage.read:/home/ligo/data

Again, these are the complete possible set of permissions and capabilities. The scopes requested by the
user then have the templates applied to them. Note that user requested compute.delete but that is not
in the templates list, so it will not be asserted. (The general policy for access tokens is that a scope
request that does not result in an asserted value is ignored, but if ultimately no values are asserted, then
an error is raised.)

The resulting claims

ID token: Several though not necessarily all. Policy may require access to lots of user information
(EPPN, affiliations), but not return any of it because of privacy concerns or anonymization
requirements.

Access token: These are put into the scope claim:

compute.cancel
compute.create
storage.read:/bgsu/users/bob/data
storage.create:/bgsu/users/bob/data
storage.read:/home/lsst/data/2022-12

Templates in scripts
A common situation is that templates are stored in an outside source (such as LDAP, Kerberos or many
others) and are retrieved on a per-user basis, possibly with imposing requirements, such as group
membership, institutional affiliations and many more. Discussing that is beyond the scope of this
section, though QDL handles all of these. The case we want to focus on is what to do once you have
your templates. Here is a quick rundown of the most useful calls in QDL.

template_substitution(templates., claims.) - substitute the values in claims into the templates..
Note that this returns a potentially very large list of possible values to check, especially if the template
corresponds to a stem. (e.g. ${isMemberOf})

downscope(allowed_scopes., requested_scopes.) - takes the requested_scopes and checks as
downscopes for the allowed scopes. This returns a list of scopes.

query_scopes(allowed_scopes., requested_scopes.) - Takes the requested_scopes and if they are
superscopes, returns the correct resolved template and if they are subscopes, checks they are allowed.

to_scope_string(x.) - takes the list of values in x (such as scopes) and turns it into a blank-delimited
string.

allowed_scopes. := resolve_templates(allowed_scopes., requested_scopes., false);

permissions. := resolve_templates(permissions., requested_scopes., exec_phase=='post_token');

access_token.'scope' := detokenize(unique(permissions.), ' ', 2); // turn in to string, omit
duplications, trailing space

s_rec. := template_substitution(record.EPE., claims.);
say('*** FNAL eta. post subst =' + to_string(s_rec.));
// Get any specific overrides.
eta. := resolve_templates(s_rec., scopes., true);

	On scope terminology
	Basic categories of templates
	Semantics of scopes
	Subscope, downscope, scope reduction
	Initial requests
	A complete example, modeled after a real configuration.

	Templates in scripts

