
RFC 7523 and OA4MP
This is a quick note about how to get a client using RFC 7523 under OA4MP. The aim is to get a
developer who needs this to work now up to speed.

RFC:https://www.rfc-editor.org/rfc/rfc7523

Executive Summary
Register your client with a public key and you can just send requests (as a signed JWT) directly for
access tokens – no user involved. This is § 2.1 of the spec. This is far better than that client credential
flow – none of the vulnerabilities – and OA4MP supports it right now.

You can alternately just use your public key in place of a client password . This is §2.2 of the spec.

OA4MP requires you get authorized as per §2.2 to make the request as per §2.1, so we need both of
these. We may relax that in the future. May.

I'll stick to an annotated example of how to make the request to the token endpoint. The initial kickoff
for the flow is RFC 7523, but the flow after that is identical to the device or auth code flow.

Registration with OA4MP
If you use the registration endpoint (oauth2/register) then there is a box for the public key. You put your
public keys in JWK (JSON webkey) format. This can include multiple keys with identifiers (kid). You
keep the private keys and sign your request JWTs with them. Note that you can use a single key, in
which case no kid is required in the request, but if you have multiple, you must include it.

(Nota Bene:This is for standard OA4MP. For CILogon (which is an extension of OA4MP), this feature
is disabled and only available to paying subscribers .)

Using the Client Management Endpoint.
If you have an administrative client for OA4MP, you can simply upload your public key(s). Remember
that you can have multiple public keys. This is documented in RFC 7591 section 2, under client
metadata. You need to supply the token_endpoint_auth_method with a value of private_key_jwt
as per RFC 7523. Then you supply either jwks_uri or jwks. These, by the way are exclusive. The
spec is clear that if you can use a JWKS uri (which is just your JWKS) then you must, since it allows
for you to control such things as key rotations. Failing that, you can just upload them

Example. Using a jwks_uri
In this example snippet (this is just a tiny part of your full registration), yo give the coordinates for you
public key(s) only:

https://www.rfc-editor.org/rfc/rfc7523
https://datatracker.ietf.org/doc/html/rfc7591

 {
 "token_endpoint_auth_method": "private_key_jwt",
 "jwks_uri": "https:// keys.bigstate.edu /public_keys/ bob .jwks ",
 "client_name": "My Example Client", … lots more

 }

Example. Uploading the JSON web keys directly.
In this example, there is one key (note that the format still must be for a full set of them, which means
you send an array).

 {
 "token_endpoint_auth_method": "private_key_jwt",
 "jwks": {"jwk":[{"alg":"EC",
 "crv":"P-256",
 "x":"MKBCTNIcKUSDi…

 }]

 },

 "client_name": "My Example Client", … lots more

 }

Again, if you upload both jwks_uri and jwks then as per the specification, the server will reject the
request. If this works, then your client is now RFC 7523 capable and you can use it as described in the
rest of this document, for either just authorization or to create signed authorization grants. Note that
you choose which key is used by specifying the kid (see below) when sending a request to the server.

Authorization (§2.2)
A typical request to the token endpoint POSTs the following two things

 client_assertion_type=
 urn:ietf:params:oauth:client-assertion-type:jwt-bearer
client_assertion=signed auth JWT

The client_assertion_type is fixed and required. The "signed auth JWT" is a JWT that is signed
with your private key. OA4MP uses the stored public key to verify.
Typical example is (line breaks added, signature truncated)

eyJraWQiOiJCMzNGODZBMzI3QTIzMkU5IiwidHlwIjoiSldUIiwiYWxnIjoiUlMyNTYifQ
.eyJhdWQiOiJodHRwczovL2xvY2FsaG9zdDo5NDQzL29hdXRoMi90b2tlbiIsImV4cCI6MTcxNzYyMjY1MC
wiaWF0IjoxNzE3NjIxNzUwLCJpc3MiOiJhdXRvLXRlc3Q6L29hdXRoL3JmYzkwNjgvcWRsIiwianRpIjoiY
XV0by10ZXN0Oi9vYXV0aC9yZmM5MDY4L3FkbC9yZmM3NTIzL0ZIZlRab042WHdwSjk5Y1ZaMGFETWJpTXg1
Z2xHTG1EY1hHSWtyTUM2UmMiInN1YiI6ImF1dG8tdGVzdDovb2F1dGgvcmZjOTA2OC9xZGwiLH0
.ukG2PD8_InSZ8cdFn1FHs_tSv_cpFUEIGMfv-0y2xXDNkk73NM1sIuBfgSLS_0v...

https://keys.bigstate.edu/public_keys/bob.jwks
https://keys.bigstate.edu/public_keys/bob.jwks
https://keys.bigstate.edu/public_keys/bob.jwks
https://keys.bigstate.edu/public_keys/bob.jwks
https://keys.bigstate.edu/public_keys/bob.jwks

which has header
{
 "kid":"B33F86A327A232E9",
 "typ":"JWT",
 "alg":"RS256"
}

Key Description
kid The key identifier in the JWK used at registration.
typ Type of payload. This is fixed at JWT
alg The algorithm used. Required

Again, if you uploaded a single key, you don’t need a kid. The payload decodes as
{
 "aud": "https://localhost:9443/oauth2/token",
 "exp": 1717622650,
 "iat": 1717621750,
 "iss": "auto-test:/oauth/rfc9068/qdl",
 "jti":
"auto-test:/oauth/rfc9068/qdl/rfc7523/FHfTZoN6XwpJ99cVZ0aDMbiMx5glGLmDcXGIkrMC6Rc"
 "sub": "auto-test:/oauth/rfc9068/qdl"
}

Notes
key Req? Description
aud Y The server address
exp Y Timestamp in seconds when this request expires
iat N Timestamp in seconds when this request was created
iss Y The client identifier
jti N An identifier created by the client. This is ignored by the

server but is passed back at times.
sub Y The client identifier. Fixed!

Authorization Grant (§2.1)
Quick review: A standard authorization code flow sends a request, the user needs to authenticate, then
the client gets a response which includes the authorization grant. This response is used at the token
endpoint to get an access token.

RFC 7523 lets you simply write your own authorization grant and send it to the token endpoint. The
trick, of course, is that your client has a trust relationship with the server (the public key) so we know it
can only have come from a specific client and cannot be forged.

The request POSTs the following

 grant_type=

 urn:ietf:params:oauth:grant-type:jwt-bearer
assertion=auth grant JWT

The grant_type is fixed and must be as given. The auth grant JWT is a JWT that is signed with your
private key. OA4MP uses the stored public key to verify.
Typical example is (line breaks added, signature truncated)

eyJraWQiOiJCMzNGODZBMzI3QTIzMkU5IiwidHlwIjoiSldUIiwiYWxnIjoiUlMyNTYifQ
.eyJhdWQiOiJodHRwczovL2xvY2FsaG9zdDo5NDQzL29hdXRoMi90b2tlbiIsImV4cCI6MTcxNzYyMjY1MC
wiaWF0IjoxNzE3NjIxNzUwLCJpc3MiOiJhdXRvLXRlc3Q6L29hdXRoL3JmYzkwNjgvcWRsIiwianRpIjoiY
XV0by10ZXN0Oi9vYXV0aC9yZmM5MDY4L3FkbC9yZmM3NTIzL044Sk81VW9wN18tb2NSR1lfWHRocVRYenct
aVNWN0hRYmVEUGUza0FQbXMiIm5vbmNlIjoidXRyVmpoZ2ZGZ0V4NHlLYnRQNDNHU3B2YkZtbXBqWkR0eGN
Vbk9pMkFOayIsInJlc291cmNlIjoiQU5ZIiwic2NvcGUiOlsib3BlbmlkIiwib3JnLmNpbG9nb24udXNlcm
luZm8iXSwic3ViIjoiZGF2ZW5wb3J0In0
.orJxMrEbQa-Q7Mue...

The header decodes as

{
 "kid":"B33F86A327A232E9",
 "typ":"JWT",
 "alg":"RS256"
}

See above, since this is identical. The payload decodes as

{
 "aud": "https://localhost:9443/oauth2/token",
 "exp": 1717622650,
 "iat": 1717621750,
 "iss": "auto-test:/oauth/rfc9068/qdl",
 "jti": "auto-test:/oauth/rfc9068/qdl/rfc7523/N8JO5Uop7_-ocRGY_XthqTXzw-
iSV7HQbeDPe3kAPms"
 "nonce": "utrVjhgfFgEx4yKbtP43GSpvbFmmpjZDtxcUnOi2ANk",
 "resource": "ANY",
 "scope": ["openid","org.cilogon.userinfo"],
 "sub": "davenport"
}

Note that any parameters you can normally send in a request can be encoded here. Hence the scope
and resource.

Key Req? Description
aud Y The address of the server
exp Y The expiration timestamp, in seconds
iat N The issued at timestamp, in seconds
iss Y The client identifier
jti N A client generated identifier

nonce N A nonce (one-time random string) a client may use to track requests
resource N OA4MP request parameter

scope N OA4MP request parameter

sub Y Usually the user name. This will be used as the subject of the identity token.

RFC7523 and the device flow (RFC 8628)
You may register your client’s key(s) and simply use them for authorization in the device code flow.

{
 "alg": "RS256",
 "kid": "EC9FCFCB3716AC4C2279DF42EC98CABF",
 "typ": "JWT"
}

The only slight change is to note that, as per the spec., the aud claim is the endpoint, so it must be the
device code flow endpoint:

{
 "aud": "https://localhost:9443/oauth2/device_authorization",
 "exp": 1717709668,
 "iat": 1717708768,
 "iss": "ashigaru:command.line2",
 "jti":
"ashigaru:command.line2/rfc7523/SpPddDaTx6SFJ7Cd9x4DYbwhQ4RtaM6FWSLUU3KJJr4"
 "sub": "ashigaru:command.line2",
}

	Registration with OA4MP
	Using the Client Management Endpoint.

	Authorization (§2.2)
	Authorization Grant (§2.1)
	RFC7523 and the device flow (RFC 8628)

