
QDL ini file for clients
If you want to run the command line client for OA4MP in QDL, then it can accept ini files rather than
the standard XML file as a configuration. This blurb documents that.

Usage
You can use this with the command line client module, so a typical invocation would be

 j_use('ini');
true
 init('/path/to/ini/files/clients.ini','name_of_client');
true

The command line client (which is now local to the current workspace) has been initialized and is
ready for use with the client named name_of_client (this is the name of the section in the ini file
with the client configuration – see below).

The basics
The basic format for an ini file is

[name0]
id0:= identifier
extends:=name0, name1, name2, …
// other entries
[name1]
id1 := identifier
//etc.

What this means is that the name of the client must be a standard ini identifier, not just an id.

Inheritence
The extends keyword is a list of client names and the given client will inherit from them in order. (This
allows for a very simple multiple inheritance mechanism, by the way). In the list

 extends := id_0,id_1,...id_n

The configuration for id_0 is overlaid with that of id_1, … id_n in turn and finally the current
configuration is overlaid. Note that this will overlay each entry in the stem. All references are resolved
before overlaying them. If this is not possible (e.g. circular dependence, extends := A,B,C,D,B then
an error is raised.)

Example

[meta_root]

[meta_root.endpoints]
 well_known := 'https://localhost:9443/oauth2/.well-known/openid-configuration/oa4mp_test'
 // More!!

[root]
extends := 'meta_root'
 jwks := '/home/ncsa/dev/csd/config/auto-test/keys.json'

[ccf.oidc.basic]
 id := 'auto-test:/oidc/ccf'
 scopes := 'openid'
 extends := 'meta_root'

[oauth.conf.basic]
 id:='auto-test:/oauth/conf'
 kid:='DAE4FADC4B9B8373'
extends:='root'

In this case ccf.oidc.basic would inherit from meta_root and oauth.conf.basic would inherit
from root and meta_root.

Sections
The ini file divides naturally into sections. These are

Section Entries Description

(top) The top level for the configuration.

asset_lifetime If asset store cleanup is enabled, this determines
how long an asset that is unused is permitted to
remain.

callback The callback aka redirect uri for this client, if there
is one. Not all clients have these.

debug_level A string given the debug level. Allowed values are
off, trace, info, warn, severe

enable_asset_cleanup If true will enable cleaning up old assets in the
store. Default is false.

enable_oidc Enable OIDC for this client. Default is true.

jwks Path to the JSON web Keys on this system.

scopes A list of scopes that this client will send

id The identifier for this client

kid The key id for the JSON Web key that this client
will use if it is using private key authorization

extends list of configuration names, in order, from which
this client inherits.

secret The secret,if there is one, for this client to use if
using client credentials

skin If the service supports skins (i.e. custom look and
feel), then you may pass this along

https://localhost:9443/oauth2/.well-known/openid-configuration/oa4mp_test

endpoints The endpoints this client will use. See note below.

authorization The authorization endpoint

client_management The client management endpoint

device The device flow endpoint

introspection he introspection endpoint

revocation The revocation endpoint

token The token endpoint

user_info The user information endpoint

well_known The well-known endpoint

logging Used for logging. If this is omitted, logging will be
to standard out so it may get messy.

count An integer. The number of log files in the rotation.
Once a file reaches it maximum size, another one is
opened. This determines how many there are.
default is 2.

disable_log4j Disable Log 4 Java. Since this is a dependency in
many projects, this tell the system to aggressively
track down instance and kill them. default is true

append_on If appending entries to log files is enabled. Default
is false. This is used chiefly if a log file is written to
by other applications and prevents the system from
deleting old ones on start up.

file The base name of the file to write to. Note that this
will get suffices depending on the count, max size
etc.

max_size The largest (in bytes) a log file may be before
rotation. Default is 10k.

name The internal name for entries. It is possible to have
several applications write to the same log file. This
allows you to separate out the entries

assets The asset store
type fileStore or memoryStore.

 (for file stores) path The base path for storage. Directories under this
path are managed by the system

remove_empty_files If there are empty files found, remove them. Default
is false

remove_failed_files If an attempt is made to load a file and it fails, an
attempt to remove the file is made. Default is false

ssl
ssl.trust_store The trust store for the system. This is needed if you

are, for instance, contacting a service with a self-
signed certificate.

cert_dn The certificate distinguished name as found in the
server’s certificate.

path The full path to the certificate
password The password for the certificate file
use_java If true will also check the standard certs sent with

Java. Default is true. Note that you may have this
false and the client can then only speak to exactly
on server.

type The trust store type. Supported types are JKS or
PKCS12

ssl.keystore The keystore. Generally this is not used for clients.
Trust stores are used to contact other server, key
stores are used for storing cert needed when
receiving connections. The client itself never acts as
a server.

path The full path to the keystore
password The password for the key store

type The type of keystore. Supported values are JKS or
PKCS12.

extended_attributes Parameters sent to the service. Normally these start
with org.oa4mp: or org.cilogon: and have a path

Notes

The client may either specify the well-known endpoint for this service and all other values will be read
from that. Or, it may specify the service URI and the system will create the default endpoints. Each
endpoint, however, may be overridden explicit if you choose to do so.

Example

[root]
 jwks:='/home/ncsa/dev/csd/config/keys.jwk'
 scopes:='email','openid','profile','org.cilogon.userinfo'
max_lifetime := 1000000

 [root.endpoints]
 well_known := 'https://localhost:9443/oauth2/.well-known/openid-configuration'

 [root.logging]
 file:='/tmp/auto-test.log'
 size:=100000
 count:=2
 name:='auto-test'

 [root.assets]
 type:='file'
 path:='/tmp/oa4mp2/command-line'

 [root.ssl.trust_store]
 path:='/path/to/certs/localhost.jks'
 password:='mairzy doates'
 type:='JKS'
 certDN:='CN=localhost'

 [root.extended_attributes]
 oa4mp:/roles :='admin'
 oa4mp:/test/path :='a','b','c',42

/* Now for another client that inherits from root */
[commandline2]
id:='ashigaru:command.line2'
kid:='EC9FC3716AC4C22742EC98CF'
extends:='root'

So in this case there is a root configuration which is incomplete. The other configuration,
commandline2 inherits from it and specifies the id and key to use.

Note: You may load clients using their stem coordinates, e.g. in the CLI

cli>load oauth.basic.override /path/to/file.ini

	Usage
	The basics
	Inheritence
	Sections
	Notes

	Example

