
Policy Documents
A policy document refers to human readable, machine language neutral document which makes
clear how the server processes requests by the client. In particular, how scopes are to be processed
by the server. Each client may have a policy in OA4MP, although the basic functioning does not
require one. Policies are for when basic OAuth is insufficient. There are very simple user metadata
policies in effect if the client is, say, and OIDC client, but there are no general policies in effect for
a wide variety of behaviors on a server. The type of access token used, such as WLCG, RFC 9068
or SciToken are mostly concerned with semantics of parts of the token and may bring some
rudimentary policies along, but these are usually insufficient for most practical needs.

For example, the SciTokens specification carefully outlines the semantics of the returned
permissions in an access token, but it cannot possibly articulate how these are determined. So the
fact that a permission like read:/home/fionna/public/data/nsf-12345 is asserted to user Bob
may actually involve looking up Bob’s group memberships, checking he is currently on the given
grant and that he is given explicit permission to read (but possibly not write) the given path. The
point is that quite obviously the SciTokens specification cannot reasonably know such a thing.

On the need for a policy document.

The OIDC specification sets some basic policies on the ID token, such as asserting the sub claim.
See the scope document for more. Clients that only need that do not need additional policies.
Public clients, which are OIDC clients that essentially wrap whether or not the user has a valid login
also need no additional policies. In a well-run OA4MP instance, however, clients that have
processing needs above and beyond the basic should always have one. The practical reason is that
as systems grow, extensions to existing policies are invariably needed. In such a case, if the policies
are not carefully managed, client behavior may become “predictable and unwanted.” The correct
workflow is to update the policy document and then update the implementation, and no changes to
the implementation happen without a change to the policy document first.

Policy documents should reside some place public and be world-readable but have a small set of
committers that can change them. It is common to but them under version control e.g. in GitHub.
The correct workflow is that if something is not in the policy document, it does not exist and policy
changes should be done carefully with good consideration for the effect. Remember that a bad set of
policies can cripple the ability of the organization to operate.

Structure of the policy document
There is no required format, but the major sections should cover various parts of the flow. Tokens
all require audience, subject, lifetime and issuer. There are defaults for these but if there are special
requirements they should be stated. Note that you should be aware of the requirements of the
service. Tokens are usually validated based on the issuer, audience and lifetime, so be sure your
policy produces valid tokens.

OA4MP allows you to assert any claim you want in a token as part of your policy. For instance,
some clients require grant information to be asserted based on group memberships so they can track
resource usage.

https://scitokens.org/technical_docs/Claims
https://oa4mp.org/pdf/scopes.pdf
https://openid.net/specs/openid-connect-core-1_0.html

A great source of confusion is what tokens are vs. their content. Many articles are unclear because
they assume that every token is a JWT and some even go so far as to refer to the access token as
“the JWT”. This is not the case at all. ID tokens are signed JWTs (JSON web tokens) as per the
OIDC specification. Access and refresh tokens, as per the OAuth specification, are simply opaque
strings1. OA4MP returns opaque strings unless the policy states otherwise. Having access tokens
that are WLCG, SciToken, &c. compliant means the token is a JWT.

Finally, OA4MP works with virtually every OAuth 2 client library in existence and a few of these
have non-standard quirks. Be sure your take these into account in designing you policy.

Prolog
This should be generally informational and at least contain the clients (by ID) for which this
applies. It is also possible to apply it to every administered client. Flows that this policy supports
(such as device flow, authorization code flow et al) should be noted.

Authorization
This relates to who can authorize, such as restricting users to a specific IDP or group membership. It
should articulate rejection modes and (if applicable) any signing requirements. If you are using
group memberships as part of the policy logic, be sure to tell OA4MP where it can find them.
OA4MP is usually considered a trusted party, so if the information is not world readable, OA4MP
needs some authorization mechanism to access it.

ID tokens
You will get these normally if your client is an OIDC client and sends the openid scope. This token
is, in fact, an assertion of the user’s metadata, such as (potentially) the name, authorization time,
various bits of information asserted by the IDP at login. The format of these is always a JWT.

Access tokens
Opaque tokens cannot assert scopes (permissions), so if you need the scope claim asserted, you
need to specify which to use. The major access token specifications are WLCG, SciTokens and RFC
9068. The first two specify the format off the permissions and capabilities, the latter does not. The
choice will mostly be driven by interoperability with whatever processes the permissions. In this
section, you list what requests (passed in as “scope”) corresponds in what permissions, capabilities
etc. This may involve articulating a mechanism (e.g. LDAP, RESTful service, database lookup, &c.,
&c.) where these reside.

1 Here’s a typical basic (opaque) OA4MP access token:
NB2HI4DTHIXS63DPMNQWY2DPON2DUOJUGQZS633BOV2GQMRPG44DGODBGU4DAOBSMQYGKMBSGI2DSNDDGM3WCOBRGA2GENLG
HBST65DZOBST2YLDMNSXG42UN5VWK3RGORZT2MJXGMZDMNJWHA3DSOBTGQTHMZLSONUW63R5OYZC4MBGNRUWMZLUNFWWKPJZ
GAYDAMBQ

which is a base 32 encoding of the actual token
https://localhost:9443/oauth2/7838a58082d0e022494c37a8104b5f8e?
type=accessToken&ts=1732656869834&version=v2.0&lifetime=900000

If you are getting one of these and don’t know what it is, you probably need to specify the token format to be JWT.

https://www.rfc-editor.org/rfc/rfc9068
https://www.rfc-editor.org/rfc/rfc9068
https://scitokens.org/technical_docs/Claims
https://zenodo.org/records/3460258
https://localhost:9443/oauth2/7838a58082d0e022494c37a8104b5f8e?type=accessToken&ts=1732656869834&version=v2.0&lifetime=900000
https://localhost:9443/oauth2/7838a58082d0e022494c37a8104b5f8e?type=accessToken&ts=1732656869834&version=v2.0&lifetime=900000

Specific behavior on getting an access token, refresh and exchanges of them (i.e. as per this table as
listed by grant type to the token endpoint) should be clarified here as well.

Action Grant type

Get the very first access token. The first two
grant types are standard user facing, the last two
are used by services

authorization_code
device_code

client_credentials
urn:ietf:params:oauth:grant-type:jwt-bearer

Refresh the access token and any refresh token refresh_token

Exchange one of the id, access or refresh tokens
for a new one

urn:ietf:params:oauth:grant-type:token-exchange

Refresh tokens
Refresh tokens can be a JWT and many client libraries require them to be so, mostly to validate
them against the server, but there is rarely content in them per se. There are at this writing no actual
specifications adopted for the format of these but the common usage pattern is that they are
unsigned. If your library requires a JWT, just ensure that your policy returns one it will validate.
This may mean setting the subject or audience to something specific. Scopes are generally not
asserted in refresh tokens.

Error handling
In the event of any errors that arise, what should OA4MP do? Generally in the authorization phase
of the code flow, OA4MP can redirect to another site. Failing that, it will show an error page or
perhaps simply forward the user to the home page for the client. Errors at other points of the flow
(e.g. during token exchange) have no user facing component so no redirect is possible, but
customizing error messages is possible.

Epilog
Final observations, notes, etc.

An Example Policy Document
In the following example, a project named NOMS (for non-orientable minimal surfaces) Working
Group needs an issuer on an OA4MP server. It does two lookups in the institution-run LDAP, first
for the user’s groups, then if the user is in the correct group(s), access token permissions are looked
up based on the user’s ID.

NOMS Working Group Policy Document

Prolog

• Author of this policy : cú.chulainn@math.oxbridge.edu

https://en.wikipedia.org/wiki/C%C3%BA_Chulainn

• Client IDs: oa4mp:/client_id/noms/fts, oa4mp:/client_id/noms/data_explorer
• Issuer : https://oa4mp.oxbridge.edu/noms

• Resource server : https://wlcg.cern.ch/jwt/v1/any (WLCG default)

• Both device and authorization code flow are supported

• All tokens should be signed with EC ES512 algorithm

Authorization

• The allowed IDP list for this client should only include:
• Oxbridge university

• User groups are found in LDAP ldap-math.oxbridge.edu with search base
 ou=people,o=Oxbridge,o=CO,dc=dev,dc=math,dc=edu
under the username.

• Tokens can only be obtained by members in the group CO:COU:math:members:active or
CO:COU:noms:members:active

ID tokens

• Subject: head of user’s EPPN

• Allowed scopes are any subset of
openid
email
profile
org.cilogon.userinfo

• Other claims:The groups from LDAP are returned in the “isMemberOf” claim as an array of
strings.

Access tokens

• Access token permission query allowed in authorization request.

• Use WLCG type for access tokens
• Lifetime: 4 hours.
• Subject: sha1sum of client ID.
• Audience: Should be the same as the resource server or to that requested by client in the

initial request.
• Other claims: If users are in the group CO:COU:noms:members:active , then the access

token must assert the claim “grant_id” with the value “NSF-123456”.
• Allowed scope are any subset of the following permissions:

storage.create:/
storage.read:/
storage.modify:/

• Only oa4mp:/client_id/noms/data_explorer can request any of the following
capabilities in addition to the above:
compute.read
compute.cancel

https://wlcg.cern.ch/jwt/v1/any
https://cilogon.org/bnlsdcc

compute.create
compute.modify

• Base storage paths are found in LDAP, ldap-math.oxbridge.edu with search base
ou=services,o=Oxbridge,o=CO,dc=dev,dc=math,dc=edu

under the username.

Refresh tokens

• Refresh tokens are JWT format
• Subject: sha1sum of the client ID
• No scope claim is asserted.
• Lifetime: 30 days.

Error handling

Authorization denied handling

• Users that are denied authorization at the issuer should be redirected to the help page located
at https://math.oxbridge.edu/registry-login-error.php

• The following entries should be sent
• error

• Same as would normally go to client callback uri
• error_description

• Same as would normally go to client callback uri
• service_id

• “no_auth”

Epilog

• Each token has a lifetime, audience, subject and issuer. There are defaults applied for each,
so omitting them means you get the default. If you want them to be overridden in some way,
please make that clear.

• Errors during authorization typically just sends the user to a portal at the institution where
the user can register. The error and error_description are standard OAuth, and in this case,
the institution requires a “serviceid” so it can route the user to the correct webpage. This is
optional and not all institutions do it.

• You can assert any claims you want as additional claims.

A typical request for this client might have scopes

openid profile storage.read:/home/bob/public/data storage.write:/home/bob/nsf-123456

 for user bob@math.oxbridge.edu.

A common use pattern: Querying the server

The above example allows for querying the server during authorization. This is becoming a more
common use pattern. This means that if the requested scopes can be generic and the returned values

mailto:bob@math.oxbridge.edu
https://www.sdcc.bnl.gov/registry-login-error.php

will be all the basic scopes that can be requested. This gives the maximum set of permissions
possible for a given authorization E.g. if the authorization request contains

storage.read:/
compute.modify

The scopes for the given user returned in the (first) access token might be

storage.read:/home/bob/public
storage.read:/home/bob/nsf-123456
storage.read:/home/public/noms
compute.modify

This is a list of all the locations that the user is allowed to read from, plus compute.modify flag
(which cannot be qualified, since it is merely present or not). Subsequent refreshes and exchanges
may use any of these including downscopes. Not all policies use this and it should be made
explicit.

	Structure of the policy document
	Prolog
	Authorization
	ID tokens
	Access tokens
	Refresh tokens
	Error handling
	Epilog

	An Example Policy Document
	NOMS Working Group Policy Document
	A common use pattern: Querying the server

