
QDL Scripts in OA4MP
Version 1.5

Table of Contents
Introduction................................................................................................................................................1
Configuration Format.................................................................................................................................2
Handlers.....................................................................................................................................................2
The XMD element in.................................................................................................................................2

State.......................................................................................................................................................3
Where does the QDL script go?............................................................................................................3
Examples...............................................................................................................................................4

Running code directly.......................................................................................................................4
Running scripts.................................................................................................................................4

Loading multiple scripts for a handler..................................................................................................5
Accessing information in the runtime........................................................................................................6

Detailed notes........................................................................................................................................8
Access Control (access_control.)......................................................................................................8
Authorization headers (auth_headers.).............................................................................................8
Claim sources (claim_sources.)........................................................................................................9
Extended Attributes (xsa.)................................................................................................................9
Flow State (flow_states.)................................................................................................................10
Email (mail., message.)..................................................................................................................10
Returned Tokens (access_token., refresh_token., claims.).............................................................11
Initial Scope requests (audience., scopes.).....................................................................................11
Refresh/Exchange scope requests (tx_audience., tx_resource., tx_scopes.)..................................11

Tip - A Note on variable visibility.......................................................................................................12
Error Handling.....................................................................................................................................12

New Way – using raise_error().......................................................................................................13
Old Way – Set an error variable and return....................................................................................13

CILogon extension..............................................................................................................................15
General Examples....................................................................................................................................16

Example: Checking arguments............................................................................................................16
Example: Checking groups for memberships.....................................................................................16
A full example.....................................................................................................................................17

Setting Extended attributes in the CLI............................................................................................17

Introduction
This blurb refers to extension to QDL server scripting system that is used on OA4MP. The basic system
is described in detail at QDL server scripts

https://qdl-lang.org/pdf/anaphors.pdf


Configuration Format
There is one extension to QDL’s anaphors, to wit, the addition of an  xmd for execution metadata block. 
This contains phase information which tells the server when to execute the script. In this case, the only 
change to QDL’s basic anaphor is here

BLOCK :
{
  CODE 
   , XMD
   [, ARGS]
  
}

XMD:
  "xmd":{
    "exec_phase" : PHASES | PHASES
  }
PHASE:
   ("pre" | "post") _ ("auth" | "token" | "refresh" | "exchange" | "user_info")

PHASES:
   PHASE | [PHASE+] // single phase or array of them. Array means execute each.  

Note that the XMD (from eXecution MetaData) is required for running QDL on a server. QDL 
anaphors are embedded in handlers. OA4MP executes anaphors as needed.

Handlers
You should read on configuring handlers for the specifics of each handler. This article is concerned 
with the QDL element in that configuration (if present),the QDL code executed by it and in particular, 
the runtime environment for any scripts. 

The XMD element. Phases.
The XMD element has the information OA4MP needs to determine when and how QDL should be 
invoked1. At this point it contains the phases where the anaphor is executed. These are denoted as 
exec_phase in the XMD.

Scripts are executed in one of 10 execution phases. There are pre- and post- phases for each of 
authorization, token,  refresh, exchange and user_info.  If you specify that the phase is pre_X then it is 
run before that endpoint is run (and before any system-wide claim sources are processed), allowing you
to e.g. do some initialization. This is typically where you set a claim source(s) or do some type of 

1 The name QDL was chosen for a couple of reasons. One of which is that it is used in aircraft navigation (QDL is one of 
several so-called Q-codes)  when a plane cannot actually see where it is going (flying in dense fog, whiteout conditions,
etc). so location, speed and heading are sent at regular intervals and the aircraft uses these in conjunction with its 
instruments to determine what course corrections it sets. The logo for QDL incidentally has the morse code for Q-D-L. 
Nobody is sure why Q-D-L was chosen for the Q-code, but it probably because the Morse code is easy to key. In  any 
case, for OA4MP, the analogy is very good, with the server calling QDL which gets the flow back on course.

https://oa4mp.org/pdf/token_handler_configuration.pdf


setup. The post_X phase allows you to do anything you need to right before the results are handed back 
to the user. 

List of phases
• auth - authorization phase

• token - first token exchange, when the grant is presented and an access and refresh token are 
gotten.

• refresh - token refresh, i.e., for grant type “refresh_token”

• exchange - for exchanges as per RFC 8693

• user_info - for queries to the user info endpoint.

• all - all of the above

These are prepended with either pre_ or post_ (e.g., “pre_auth”, “post_all”) to denote if they are 
invoked before system processing or after system processing of that phase. If you use the unqualified 
all phase, then the script will be run every time.

Certain claims can only be gotten at certain times. For instance, claims that rely on the http headers 
from the identity provider are only available during the authorization phases, so these claims are gotten 
and stored. These can never be re-gotten until the user logs in again. 

Usually the requirements for the exchange are the same as for the token phases, so the most common 
use pattern is to just specify exchange, refresh and access phases for a single script. Note that, as 
always, the current phase is set in the state, so your scripts can check.

State
When a QDL script is run on the server, its state is stored and then recovered for each subsequent call. 

You have a single environment from start to finish for your scripts.

E.g., If  you set something in, say, the pre_auth phase, it will be there in the post_exchange phase . See 
below for the table of system-managed constants. See “Accessing information in the runtime” below. 
These are injected into the state every time the system loads allowing you to have current state in sync 
with the flow. If you need something for later, store it in another variable. 

Where does the QDL script go?
There are two places

1. Inside a handler. This means that it is only invoked for that handler in the specified phase(s).

2. At the top-most level in the server configuration. This is outside of the current domain of this 
document and is used for setting up server-wide scripts that e.g., run for every client.

https://oa4mp.org/server/manuals/scripting-hooks.html


Understanding anaphors
The main documentation for anaphors – the JSON serialization of calls to the QDL runtime engine is 
intentionally simple and should be read before going any further. 

Examples

Running code directly

Running a single line of code. 
In this case, a token handler for identity tokens is created and a single line of code is run to assert a 
claim:

 tokens{
   identity{
     type=identity
       "qdl":{
         "code":"claims.foo:='arf';",
         "xmd":{"exec_phase":["post_token"]}
       } //end QDL
     } //end identity token
 }// end tokens

This will assert a single claim of foo has the constant value of arf. Note this runs exactly once right 
after the access token is created and that claim will then persists through refreshes, exchanges and such.

Running multiple lines of code. 
If you wanted a more complex anaphor with several lines of code, just pass an array of lines. The 
anaphor in the handler would then be

{"qdl":{"code":[
           "x:=to_uri(claims.uid).path;",
           "claims.my_id:=x-'/server'-'/users/';"
         ],
        "xmd":{"exec_phase":"pre_token"}}}

(This takes a claims.uid (like 'http://cilogon.org/serverA/users/12345') parses it and asserts 
a new claim, having the value my_id == 'A12345'.

Running scripts

Loading a simple script that has no arguments 
{"qdl":{"load":"x.qdl", "xmd":{"exec_phase":"pre_token"}}}
Note that if there were arguments, they would be included in the arg_list. While arguments to the script 
are optional (at least as far as the handler goes), some execution phase is always required so the handler
knows when to run it. If you omit the execution phase, your code will never run.

https://qdl-lang.org/docs/pdf/anaphors.pdf


Loading a script and passing it a list of arguments.

{"qdl":
   {
     "load":"y.qdl",
     "xmd":{"exec_phase":"pre_auth","token_type":"access"},
     "args":[4,true,{"server":"localhost","port":443}]
   }
}

This would create and run script like (spaces added)

script_load('y.qdl',
     4,true,from_json('{"server":"localhost","port":443"}')
   );

Note that the arguments in the configuration file (which is JSON/HOCON) are respectively an integer, 
a boolean and a JSON object. These are faithfully converted to number, boolean and stem in the 
arguments the script gets.  

Loading a script with a single argument 

{"qdl": {
  "load": "y.qdl",
  "xmd":  {"exec_phase": "pre_auth","token_type": "access"},
  "args": {"port": 9443,"verbose": true,"x0": -47.5,"ssl":[3.5,true]},
 }
}

In this case, a script is loaded and a single argument is passed. This is converted to 

script_load('y.qdl', 
   from_json('{"port":9443,"verbose":true,"x0":-47.5,"ssl":[3.5,true]}')
  );  

Loading multiple scripts for a handler
The handler identifies what sort of state you want exposed to the QDL scripts. Again (because it is 
important), the id token handler does not supply the access token and if you create on there, it will be 
ignored. Partly this is because in the control flow it makes no sense to be populating the access token at
that point. If you have want to run multiple scripts in a single handler, they should have disjoint phases 
and simply be passed as an array of scripts:

{"tokens":
 {"access": {
 "lifetime": 1200000,
 "type": "scitoken"
 "qdl":  [
 {"load": "ga4gh/ga4gh.qdl","xmd": {"exec_phase": ["post_user_info"]}},
 {"load": "ga4gh/at.qdl","xmd": 



    {"exec_phase":["post_token","post_refresh","post_exchange"]}}
 ]
}}}}

In this case, two scripts are run by the handler. The first is at.qdl for setting up access tokens, and the 
second, ga4gh.qdl, is run in the user info phase. In this case, QDL needs to know about the access 
token to construct various bits of new information, a GA 4 GH passport. (As to the advisability of 
doing it in the user info endpoint, I demur.) The point is that you don't need to drop everything in one 
massive QDL script and deal with phases – let the system do that. You may also have multiple scripts 
per phase, but that might mean you should have a driver script that calls them. There is a strong 
suggestion that the phases be disjoint.

State in the runtime.

Loaded modules
Usually OA4MP loads several modules for your convenience to use. These are available without any 
specific action on your part.

Variable Namespace Module Description
acl oa2:/qdl/acl Access control

claims a2:/qdl/oidc/claims Claim utilities

jwt oa2:/qdl/jwt JSON web token utilities

Managed Variables
When a script is invoked, the QDLRuntimeEngine will set the following in the state:

Variable U Component Description Comment
access_control. - all ACL info This stem contains the client id in 

client_id and a possibly empty list of 
admins. See below.

access_token. + access token claims The current set of claims used to create the
access token (if that token requires them).

at_original_scopes. access_token,
refresh,

exchange

original 
access 
token 
scopes

This is a list of the scopes that were 
returned in the first token exchange. It 
cannot be altered. The intent is that you 
have it for reference in scripting for 
checking up or down scoping.

audience. - id token requested 
audience

Requested audiences in the initial request. 
This may impact multiple tokens, such as 
the id token and the access token. Again, 
the spec. allows this to be overloaded.



auth_headers. - all auth 
headers

In the pre and post auth phase, the HTTP 
headers will be converter to this stem.  In 
all other phases, this exists, but is empty. 
This allows an IDP to assert user 
information (e.g. SAML does this) at 
authorization.

claims. + id token claims The current set of user claims that will be 
used to create the ID token.

claims_sources. + id token list of claim
sources for 
id token

A list of claim sources that will be 
processed in order. If you add one, be sure 
it is in the right place if needed. You may 
add/remove as needed.  

exec_phase - all current 
phase

This is the phase the script is being 
invoked in. It may be the case that  a script
is invoked in several phases (e.g. if there is
a lot of initial state to set up) and blocks of
code are executed based on the current 
phase. Only one phase at a time is active.

flow_states. + all Flow states The various states that control execution. 
Generally you only need to use these if 
you need to change the control flow, 
typically, there is an access violation and 
you terminate the request.

mail. - all The mail 
configuratio
n

This is the server configuration for email 
which allows for QDL scripts to send 
notifications. See the section on email.

message - all The 
configured 
message

Note that this follows QDLMail format, so
the first line is the subject and the rest of 
the stem is the body. 

oa4mp_error - all 1000 A reserved value for error handling. See 
below.

proxy_claims. - all claims from
the proxy

If you have enabled authorization by 
proxy, the list of claims with their values 
allowed to the client is put here

refresh_token. + refresh token claims Claims used to create the refresh token, if 
supported.

scopes. - all requested 
scopes

The scopes in the initial request. This may 
include scopes for access tokens too since 
the spec. allows this to be drastically 
overloaded. Setting this is ignored – you 
cannot change the scopes the user 
requested (though you sure can ignore 
them).

sys_err. + all Errors This is a stem you set in order to have the 
runtime engine generate an exception 
outside QDL. See below, Errors



tx_audience. - " TX 
audience

requested audience for TX. These are 
strings that identify the service using the 
token.

tx_resource. - " TX 
resources

requested resources for TX. Similar to 
audience but these are URIs.

tx_scopes. - refresh, access
token

TX scopes requested scopes for TX

xas. - all extended 
attributes

Extra attributes (namespace qualified) that 
may be sent by a client. 

U = updateable.  

+ = y,

- = no.

If it is not updateable, then any changes to the values are ignored by the system.

TX = Token Exchange (RFC 8693). These are sent in the request. They may or may not be sent and in 
that case, but they always exist inside QDL during the pre_exchange and post_exchange phases (not 
at other times, since they come from the request itself). You can check with a call to size(var) and if 
it is zero, nothing was requested.

Claims objects are always directly serialized into the token for the JWT. All of these are in the state and
you simply use them. When all is done, they are unmarshalled and replace their previous values. NOTE
that while your QDL workspace state is preserved, the next time it is invoked, the current values of 
these will be put into your workspace. i.e., what the system has is authoritative. If you need to preserve 
some bit of this then stash it in a variable other than one of the reserved ones.

Also, the current set of signing keys are injected into the JWT utilities and available there,  so issuing a 
create_jwt(arg.) will just create a correctly signed JWT. 

Detailed notes

Access Control (access_control.)
The variable access_control. is from QDL's ACL system and contains the current client identifier in 
the client_id entry and a list of admin ids (if there are any) in the admins. entry. Generally the admin
list will have at most one entry, which is the one that allowed this flow in the first place. This is not 
alterable. 

Authorization headers (auth_headers.)
Many identity providers (IDPs) send information about the user in the header when the user 
authenticates. Some fo these, such as the acr claim are standard, but many times they are not. A 
common construct is to prefix claims intended for OIDC or OAuth with a string, such as 



OIDC_CLAIM_. In the QDL runtime environment almost all the claims are put into a stem called 
auth_headers.   A few claims, such as authorization, which may contain the client password, are not 
returned, but otherwise the claims are normalized so the name is lower case (as per RFC 7230 § 3.2 
they are case insensitive) and the values are asserted as either strings or as a list of strings. A typical 
example of auth_headers. is (formatted, line breaks added for readability):

                      accept : text/html,application/xhtml+xml,\
                               application/xml;q=0.9,image/avif,\
                               image/webp,*/*;q=0.8
             accept-encoding : gzip, deflate, br
             accept-language : en-US,en;q=0.5
                  connection : keep-alive
            oidc_claim_email : bob@physics.bgsu.edu
       oidc_claim_first_name : Robert
           oidc_claim_groups : [bgsu-all, bgsu_physics, high-energy] 
        oidc-claim_last_name : Smith
              sec-fetch-dest : document
              sec-fetch-mode : navigate
              sec-fetch-site : none
              sec-fetch-user : ?1
   upgrade-insecure-requests : 1
                  user-agent : Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:125.0)\
                               Gecko/20100101 Firefox/125.0

You may either process these directly as any other stem or use the http header filter claim source . If 
that seem to be a lot of unnecessary extra information, remember that QDL is leaving making sense of 
it to you, since there is no standard on what a server can pass back. As much as possible is returned. 
except if there is a bona fide security issue (such as cookies, passwords, &c).

A final note is that this is available only in the pre_ or post_auth phase. The variable is defined in 
other phases, but is empty. If you want/need to save some values, stash them in another variable that is 
not controlled by the system.

Claim sources (claim_sources.)
OA4MP is able to use a list of claim sources (a stem of stems) to automatically get user meta data 
claims. This was the original system in OA4MP before QDL and is still used by a some clients. Proper 
usage is to set these in sequence in some init script and then OA4MP manages them after that 
(including getting data for the user info endpoint). The use of this is discouraged, however, since 
control passes outside of QDL, hence there is only very clumsy access to the sources once set. The far 
better way is to just get the information you want directly in a QDL script.

Extended Attributes (xsa.)
These are sent by the client to the service in the initial request and are of the form:

NS:path = v0,v1,v2,…

Where NS is the namespace oa4mp or cilogon and path  is just a standard path. 

https://oa4mp.org/pdf/creating_claim_sources2.pdf


E.g. If a client sent this as part of its set of parameters

oa4mp:/tokens/access/lifetime=3600000&oa4mp:/roles=admin,users

Then in the environment, there would be a stem xas. with the value

{oa4mp:{/tokens/access/lifetime:3600000,/roles:[admin,users]}}

Note that OA4MP does nothing with these except pass them along to the scripting environment. They 
are also read only. One potential use is that the client can send custom information about group roles 
for a given user directly.

A final note is that there is no canonical way for OA4MP or QDL to determine what the types of 
variables are, since the request jumps through so many hoops, so they are all string-valued. In the case 
of the /refresh/lifetime. this means it needs to have to_number() invoked as needed, etc.

Example. Configuring the OA4MP client to send XAs
Now, the client must  send the parameters as uris that start with either oa4mp: or cilogon: and these 
may be many valued. A typical use is in the webapp client configuration (which allows for static 
attributes and is useful for testing), so in the OA4MP client configuration you might have and entry like

<client name="myclient">
        <parameters>
          <parameter key="oa4mp:role">researcher</parameter>
          <parameter key="oa4mp:role">admin</parameter>
          <parameter key="oa4mp:/refresh/lifetime">1000000</parameter>
        </parameters>
<!-- bunch of other stuff - - >
</client>

If all goes well, then in the runtime environment you would get xas. as the stem : 

{
  oa4mp :  {
    /refresh/lifetime :[1000000],
    role : [researcher,admin]
    }
  }
} 

Flow State (flow_states.)
These are the states that the flow may be in. They are boolean values and setting them has an 
immediate impact on how processing is done.

Name Description
access_token Allow creating an access token
id_token Allow creating the ID token
refresh_token Allow creating refresh tokens



user_info Allow creating user info
get_cert Allow user to get a cert
get_claims Allow the user to get claims
accept_requests Deny all requests if false. This is the nuclear option to shutdown access.
at_do_templates Allow execution of templates for access tokens.

A typical use might be the following. In the post_auth phase (so after the system has gotten claims) 
check membership and deny all access if not in a group:
if[
  exec_phase == 'post_auth'
 ][
  flow_states.accept_requests := has_value('prj_sprout', claims.isMemberOf.);
 ];    

The effect is that if the isMemberOf claim (these are the groups that a user is in) does not include 
'prj_sprout' then all access to the system is refused after that point. Note that system policies do have 
the right of way, so if the system would not normally let a user get a certificate,  setting get_cert to 
true  would be ignored. 

Email (mail., message.)
As of OA4MP 5.4, QDL scripts now have access to QDL Mail,, a facility for sending email messages. 
If the server has email configured already, then the workspace inherits the configuration and the 
message (remember that the first line of the message is they subject.) These are in the stem variable 
mail.

   jload('mail'); // load the module if you are going to use it.
   mail#cfg(mail.'cfg');  // set the inherited server configuration
   mail#send(mail.'message'); // send the inherited message

You could also replace templated values with, e.g., the user metadata claims:
   mail#send(mail.'message', claims.);

You do not need to use the inherited configuration or messages and can send whatever you like.  See 
the QDL Mail documentation for more information.

(Note: The documentation for QDL Mail talks about getting the correct mail jar. This is done already in
OA4MP as part of a standard deployment, so you don't have to worry about it all. If OA4MP is 
working right, you should just be able to use email.)

user. := null;
   try[user. := script_run('utils/get_user', id);] 
 catch[
        jload('mail')
        mail#cfg(mail.'cfg'); // use the server default mail
        mail#send(['Error getting user', // first line is the subject
                   'The user with id ' + id + 'was not found',
                   'message reads:' + error_message]);
        // Now, in this case, raise an error and exit
        raise_error('could not get user info for ' + id); 



      ];// end catch

You could get more information from the error_message, error_code and error_state.  
variables inside the catch block, so this is really just to show how it works. If you did not raise an error,
processing would fall through to the next line of code after the catch block (which is another option, 
depending on what you need to do).

Returned Tokens (access_token., refresh_token., claims.)
These variables are the actual content (payload of a JWT) returned by OA4MP. The claims. are turned
into the id token. Changes to these are done by setting the value. You set the values to what you want, 
so e.g. access_token.scope should be set to a blank delimited string of scopes.

Initial Scope requests (audience., scopes.)
These are the audience and scopes in the original request at the time the flow is started. Note that 
“original” means the first place in the flow where they may be specified. They may not be altered and 
are lists.

Refresh/Exchange scope requests (tx_audience., tx_resource., 
tx_scopes.)
In either the refresh or exchange endpoint OA4MP allows for scope, audience and resource parameters 
as part of the request. These are processed into lists and supplied in their current state. This means that 
they are what is in the that request. A useful idiom to get the current set of these is something like

requested_audience. := (size(tx_audience.) == 0)?audience.:tx_audience.;
requested_scopes. := (0 < size(tx_scopes.))?tx_scopes.:scopes.;

which sets the requested_audience. and requested_scopes. to whatever is available in the 
workspace. 

A Note on variable visibility
A common construct is to have a driver script like this:

  if[exec_phase=='post_auth']
then[script_load('my/access.qdl');];
  if[exec_phase=='post_token']
then[script_load('my/token.qdl');];
// .. may be others

Remember that in QDL, [. . .] (square brackets) tell QDL to create a specific scope for what is 
inside. The net effect is that every variable defined in the script resides in the then block and won't be 
saved as part of the state. How to get variables to persists between script invocations? Set the variable 
in the driver script but make sure not to overwrite a previous value:

my_var := ( my_var)?my_var:null; // initialize to null, unless already set∃
  if[exec_phase=='post_auth']
then[script_load('my/access.qdl');];



  if[exec_phase=='post_token']
then[script_load('my/token.qdl');];
// .. may be others

So now you can simply set the value of my_var any place in your scripts and have it available. 

Alternate approach would be to simply set an extrinsic (i.e. global) variable any place you want it by 
prefixing it with $$:

   $$my_var := 'bar'; // persists through all phases.

This requires no special handling but some people do not like global variables. 

Error Handling
Errors in OA4MP scripts have to be handled as per the OAuth 2 spec. If there is an error inside a script,
how can this get propagated to the runtime engine so that it may be handled by another component? For
instance, if running a QDL script inside an OAuth 2 server, OAuth 2 has its own error handling 
specification that needs to be followed. What follows is how to configure error handling for use outside
of QDL.  There are two ways. The old way was used before QDL had its current error handling. The 
new way raises an error with a specific code. Both work. The newer way is much more flexible and 
hands off – errors just propagate. The old way required checking an error code after each script 
invocation and manually propagating the errors. 

New Way – using raise_error()
This has a reserved code of in the system variable oa4mp_error (= 1000) and the (optional) stem 
should have certain entries for processing.  The state stem that is passed in the error call  contains the 
information for OA4MP. Most basic example:

if[
 script_args() != 2
 ]then[
 raise_error(
   'Sorry, but you must supply both a username (principal) and password.',
   oa4mp_error);
 ];

Supported stem entries. Note that the message (first argument) to raise_error is returned as the 
error_description.

QDL Key OAuth Description
error_type error OAuth 2 specific error type.
status (HTTP status) (Optional) The HTTP status set in the response.

error_uri error_uri (Optional) OAuth 2 error_uri

https://www.rfc-editor.org/rfc/rfc6749#section-4.1.2.1


Full Example. 

In this example, we need to raise an error for OA4MP during a flow with a specific HTTP status: 

raise_error('raise_error test', 
             oa4mp_error, 
           {'error_type' :'error_type_message',
                'status' : 401
              'error_uri':'https://localhost/oops'}
);

This results in an OAuth error (to the client's callback uri) with HTTP status 401 and body

{
             "error" : "error_type_message",
 "error_description" : "raise_error test",
         "error_uri" : "https://localhost/oops",
             "state" : "b5gF_Sup2WNlLsB5ZPcjjFpEnPPSmowqeTwP-7GCAAs"
}
(In this case, the state value returned is part of the OAuth spec and added as needed.)

Tip: If you set the custom_error_uri below, you might want to set the status to 302.

Old Way – Set an error variable and return (deprecated!).
In a  QDL script, you set the error variable

sys_err.

stem.  If absent or ok is true, then no error has occurred. You can construct two types of exception,  
OAuth 2 exceptions and  CILogon DB service exceptions (only available if you are running the 
CILogon extension to OA4MP).  Note that this you simply return from the script at that point and must,
in effect, do your own stack handling, so you must check each call after it returns if sys_err.ok is 
false and return. Raising an error does not require this and is hence more attractive.

Example: Propagating errors manually
If you set the error variable, you must check each script to see if an error should be propagated back. 
This example shows that.  In this example, the script 'init.qdl' is called, the ok flag on the error 
variable is checked and if true, then return immediately.  

script_run('init.qdl');
if[!sys_err.ok][return();]; // If there was an error, return

 Key value pairs for the error variable are:

QDL Key OAuth Description
ok --  Must be false  to trigger error handling

message description Human readable description
error_type error OAuth 2 specific error type.



status (HTTP status) (Optional) The HTTP status set in the response.
error_uri error_uri (Optional) OAuth 2 error_uri

If the HTTP status is not set, the specification says to default to 401.

E.g. Construct the error variable error in QDL in the case that there is an unauthorized client.

        sys_err.ok := false; // not ok, there is an issue
    sys_err.status := 401;
sys_err.error_type := 'unauthorized_client'; // authorizing the client failed
   sys_err.message := 'unknown client'; // unregister clients
 sys_err.error_uri := 'https://bgsu.edu/error';

This results in an OAuth error (to the client's callback uri) with HTTP status 401 and body

{
              "error" : "unauthorized_client",
  "error_description" : "unknown client"
}

Setting the error_uri returns it as well, as per the specification. (Note, the QDL runtime may add 
other information, such as state to this, the point is that creating sys_err. in QDL allows the OAuth 
error handler to take the appropriate action.)

E.g. Checking for scopes. 

In this case, a scope is missing that is critical for operation. This throws a standard OAuth 2 error.

if[
 'org.cilogon.userinfo'  scopes. // or !has_value('org.cilogon.userinfo',scopes.)∉
 ][
    raise_error('the org.cilogon.userinfo scope is required.',
                 oa4mp_error,
                {'error_type' : 'invalid_request'});
];

CILogon extension
In addition to the OA4MP values above, the CILogon extension to OA4MP supports the following 
during authorization only

QDL Key CILogon Description

code status (Optional) integer code for the error type
custom_error_uri custom_error_uri  (Optional) error uri not in OAuth 2 spec.

These are either used in the error variable or as part of the state for the error.

In the authorization phase, these are returned by the DBService. The aim is to allow for a better user 
experience, so if, e.g. a user is not registered with the system, a custom uri can be supplied by the client



to redirect said user to some institutional sign-up page, rather than getting dumped into a generic 
CILogon failure page.

E.g. 
Construct an explicit CILogon error  variable:

              sys_err.ok := false;
            sys_err.code := 65541; // hex 0x10005, create transaction failed
      sys_err.error_type := 'access_denied';
         sys_err.message := 'could not create transaction, user not found';
sys_err.custom_error_uri := 'https://physics.bgsu.edu/user/register';
        sys_error.status := 302; // make sure it redirects!

(followed by a return()) or doing the exact some thing by raising an error:

raise_error('could not create transaction, user not found',
             oa4mp_error,
           {'code' : 65541, // hex 0x10005, create transaction failed
      'error_type' : 'access_denied';
'custom_error_uri' : 'https://physics.bgsu.edu/user/register'}
);

This would result in the following response from the DBService:

{
   status=65541,
   error_description= could not create transaction, user not found,
   error = access_denied,
   custom_error_uri= https://physics.bgsu.edu/user/register
}

CILogon note about setting the status: If you throw an OAuth 2 error that is processed by the 
DBService layer, it will be converted to a CILogon error.  In that case, the status returned in the 
response (not to be confused with the HTTP status, since all DBService responses have that set to 200) 
will be set to 0x100007 (generic QDL error) since there is no easy association of random OAuth errors 
with CILogon specific errors. If you need to have a specific status returned (e.g., 0x10001, transaction 
not found), you should set it.

General Examples

Example: Checking arguments
The example here is Checking the number of arguments for a script to see if it should run and sending a
useful message back:

if[
  size(args()) != 2
 ]then[



   raise_error('You need to supply both a username and password. Request denied.',
               oa4mp_error,
               {'error_type' : 'access_denied'});
 ];
// Otherwise, do stuff.

Example: Checking groups for memberships
QDL allows this quite simply though it might not be apparent. First off, there is a function that is 
available called in_group2 (There is a deprecated version called in_group – don't use that, which is 
clunky and old) which has syntax

in_group2(group_names, groups.)

where group_names  is a name (a string) or stem of them.  groups. is the groups from a claim source.
Now the rub is that the structure of  groups. depends on the source. Some sources return just a flat list
of names and some return a JSON structure that has to be parsed.  in_groups2 handles these cases. 
The result is conformable with the left argument. So a typical invocation is

   in_group2('all_ncsa', claims.isMemberOf.)
true

which shows that the name all_ncsa is in the claims.isMemberOf. Since the result is left 
conformable, if you wanted to check a list of names, you might do something like

   g. := claims.isMemberOf.; // Keep it readable here
   g_reject. := ['disabled','banned','deny_all','deny_web'];
   deny. := in_group2(g_reject., g.);
   deny.;
[false,false,false,true]

So the user is in the deny_web group. How to check if at least one of those is true? Use the reduce 
function with  || (logical or):

   reduce(@||, deny.);
true

which is identical to evaluating

   false || false || false || true
true

Since the reduce function just slaps || between all elements of the list. A use might be
   if[reduce(@||, deny.)]
 then[flow_state.'accept_requests' := false;
      return();
     ];

In which the user is found to be in the  deny_web group so all further access is denied and the flow is 
stopped dead in its tracks.



A full example
In this example, group memberships are checked and if a person is not in them, an error is raised.

chk_group(rejects., groups.) -> reduce(@||, in_group2(rejects., groups.));

if[
  chk_group(g_reject., z.)
]then[
  raise_error('User not in group. Cannot determine scopes.',
  oa4mp_error,
  {'error_uri' :'https://phys.bsu.edu/users/register";
  'error_type' : 'access_denied';
      'status' : 404}
  );
];

This defines a function, chk_group and uses that to craft an error. A message is returned along with the 
status and in this case, a uri is passed back so whatever handles this can redirect the user appropriately.

Setting Extended attributes in the CLI
These are parameters sent to the server by the client in the initial request. First off, the client must have 
the ability to process them turned on. This is in the extended attributes for the client, so in the CLI, set 
the client id, then issue

update -key extended_attributes

and when prompted enter

{"oa4mp_attributes": {"extendedAttributesEnabled": true}}


	Introduction
	Configuration Format
	Handlers
	The XMD element. Phases.
	State
	Where does the QDL script go?
	Understanding anaphors
	Examples
	Running code directly
	Running scripts

	Loading multiple scripts for a handler

	State in the runtime.
	Loaded modules
	Managed Variables
	Detailed notes
	Access Control (access_control.)
	Authorization headers (auth_headers.)
	Claim sources (claim_sources.)
	Extended Attributes (xsa.)
	Flow State (flow_states.)
	Email (mail., message.)
	Returned Tokens (access_token., refresh_token., claims.)
	Initial Scope requests (audience., scopes.)
	Refresh/Exchange scope requests (tx_audience., tx_resource., tx_scopes.)

	A Note on variable visibility
	Error Handling
	New Way – using raise_error()
	Old Way – Set an error variable and return (deprecated!).

	CILogon extension

	General Examples
	Example: Checking arguments
	Example: Checking groups for memberships
	A full example
	Setting Extended attributes in the CLI



