
Using OA4MP as a Dedicated Token
Issuer

Overview
In this case, you have a possibly existing service that you want to start issuing tokens. The contract
for your DTI (Dedicated Token Issuer) is that it gets requests from clients and it issues the tokens
from OA4MP, which then have the entire abilities of any other OA4MP flow, such as refreshing or
exchanging tokens, querying user information etc. OA4MP may be completely hidden from users if
the DTI service so desires, by simply intercepting all requests and forwarding them. This can give
enormous flexibility in use. A typical case is that a service requires tokens from a trusted issuer to
access resources (e.g. computational, data) and, while running on behalf of a user, the user is not
available. Think Condor with 10,000 submit nodes that needs many files for a single job from a file
server. The user has started the job, but absolutely cannot manually approve each token. The DTI
then services the requests.

How it works

The DTI (or others) can create standard OA4MP clients with credentials. Clients must be managed
by an administrative client. The clients will make subsequent requests (which may involve using
their credentials or signing them, however it is desired) to the DTI. The service will make the
request on behalf of the user (and client) for a token. This a signed request the administrative client
makes which returns the tokens which in turn are returned to the requester in the response. The
client then takes over the flow.

Note there is a specific trust relation that allows the admin client using a signed RFC 7523 request
to do this without having the keys or credentials for the client. The client, however, must
authenticate all subsequent requests as per the specification. This means a client can set its own
keys or credentials and its admin client does not have to manage them. All of OA4MP is still there
and institutions can have admin clients with their own virtual issuers and clients as well so the
topology of such a system may be arbitrarily complex.

Do I need the authorize and device endpoints?

No. The most basic version of this has those completely taken over by the DTI. However, the entire
token request is done securely and is independent of all other forms of authentication. It is therefore
possible to have a completely standard OA4MP server in addition to a DTI.

Prerequisites
In order to use this, you must set up your own DTI Service which will handle requests from users
or clients. Typically they request will contain scopes, audience requests etc and your service must
handle these.

1. The DTI itself.

2. The OA4MP server, which will function as the dedicated token service.

3. An administrative clients on the OA4MP server. These must have RFC 7523 keys and be set
so that they can initialize flows. By initialize a flow we mean they make a signed request
using RFC7523 §2.2 which makes the token request as per RFC7523 §2.1. This returns
tokens. Note that depending upon the client configuration there are up to 3 tokens for ID,
access and refresh. The admin client must be the administrator of the requesting client or

the request will be rejected.

4. The client then uses the token and its credentials to make all of the standard requests to the
OA4MP service for refresh, exchanges, user info, token introspection etc.

The essential idea is really simple. Create a dedicated client for your service, called a service client
which uses RFC 7523 to communicate to OA4MP via a back channel. This client only
communicates with signed requests.

Ways to show or hide OA4MP.
You have a DTI. It may either broker all requests to OA4MP, effectively hiding it.

Example: Hiding OA4MP with a reverse proxy lookup (Apache)

You are running, e.g. Apache. Your DTI, which is written in the language of your choice, resides at
https://my_service.xyz.org/authorize Requests to Apache call this.

 OA4MP is on the same machine running under Tomcat, and is restricted to localhost access only. It
has endpoints

https://localhost:8080/oauth2/token
https://localhost:8080/oauth2/refresh
…

All requests go to Apache, which are rewritten to access Tomcat. The initial request is serviced by
the AS and after that, requests for OA4MP endpoints are simply done by URL rewriting, so

https://my_service.xyz.org/refresh?…

would be converted to

https://localhost:8080/oauth2/refresh?...

and the response returned. This does give you the option of processing each request if needed.

Example: Coexisting with OA4MP

In this case, all standard OA4MP endpoints are available, you simply deploy your DTI (which must
run under Tomcat, usually Java, though if you are really slick, Tomcat can run CGI and no, we don’t
cover how to do that here) to the standard endpoint, e.g.

https://www.rfc-editor.org/rfc/rfc7523#section-2.1
https://localhost:8080/oauth2/refresh
https://my_service.xyz.org/authorize
https://localhost:8080/oauth2/refresh
https://localhost:8080/oauth2/token
https://my_service.xyz.org/authorize

https://my_service.xyz.org/dti ← your service
https://my_service.xyz.org/oauth2/authorize ← OA4MP
https://my_service.xyz.org/oauth2/device “ “
https:// my_service.xyz.org /oauth2/token “ “
… “ “

(Remember that the token endpoint issues tokens, but is also used for e.g. refresh requests, so you
still need it.)

Creating the token request to OA4MP
The details for using RFC7523 are here: https://oa4mp.org/pdf/rfc7523_intro.pdf. The authorization
grant is for the administrative client and is signed with its key. The token request is unsigned and
for the client ID, hence it has the client identifier set as the issuer (iss claim). This is because the
server should not be storing the client’s credentials and impersonating it, but rather there is a secure
trust relationship that allows for initializing a flow.

Example

Create the authentication request for the admin client. In this case OA4MP is hidden and allows
only localhost access with address https://localhost:9443/oauth2/token. The DTI has gotten
a client request (whatever your service wants) which contains the information to make this token
request. This request requires the private key for the admin client. Here the admin client has id
admin:test/vo_1 and is making the token request on behalf of the client
localhost:test/initialize_flow.

Header:

{"kid":"563054FD9C2E418A","typ":"JWT","alg":"ES256"}

This uses the private key with kid 563054FD9C2E418A to sign the request.

Payload:

{
 "sub": "admin:test/vo_1",
 "aud": "https://localhost:9443/oauth2/token",
 "iss": "admin:test/vo_1",
 "exp": 1756158978,
 "iat": 1756158078,
 "jti": "admin:test/vo_1/rfc7523/n9b6SlQPoauQ0h_4DmU3UpFptoiglnVJKN7bQxObgwA"
}

which results in the signed JWT (the client_assertion parameter):

eyJraWQiOiI1NjMwNTRGRDlDMkU0MThBIiwidHlwIjoiSldUIiwiYWxnIjoiR...

Create the token request for the client:

Header:

{"typ":"JWT","alg":"none"}

https://oa4mp.org/pdf/rfc7523_intro.pdf
https://localhost:8080/oauth2/refresh
https://my_service.xyz.org/authorize
https://localhost:8080/oauth2/refresh
https://my_service.xyz.org/oauth2/device
https://my_service.xyz.org/authorize
https://my_service.xyz.org/dti

Payload:

{
 "iss": "localhost:test/initialize_flow",
 "sub": "jeff",
 "jti": "localhost:test/initialize_flow/rfc7523/puGJcUBxSe6HawwCxyDRukGM",
 "exp": 1756158978,
 "iat": 1756158078,
 "nonce": "_0IyVynIJWys3TI1qmiCtaJF70u6X9rpgCxD8WjpwnI",
 "scope": [
 "read:",
 "write:",
 "org.cilogon.userinfo",
 "openid",
 "profile",
 "email"
]
}

The JTI is created/managed by the client and should be unique so it can be used to track the flow.
This yields an unsigned JWT (the assertion parameter) :

eyJ0eXAiOiJKV1QiLCJhbGciOiJub25lIn0. ...

And the full request (line breaks added) before encoding:

https://localhost:9443/oauth2/token?
client_assertion_type=urn:ietf:params:oauth:client-assertion-type:jwt-bearer&
client_assertion=eyJraWQiOiI1NjMwNTRGRDlDMkU0MThBIiwi...&
grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer&
assertion=eyJ0eXAiOiJKV1QiLCJhbGciOiJub25lI…

The typical response then is

{
 "access_token": "eyJraWQiOiIyOTc4RkY1NDhBNTVBNzM5N...,
 "refresh_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJub25lIn0….,
 "scope": "read:/home/public/data/cern
write:/home/jeff/grant_76536789/cern/data email profile org.cilogon.userinfo
openid",
 "refresh_token_lifetime": 3600,
 "id_token": "eyJraWQiOiIyOTc4RkY1NDhBNTVBNzM5NTAyRTNCQzY0QTU4RTJC...,
 "token_type": "Bearer",
 "expires_in": 900,
 "refresh_token_iat": 1756206421
}

In this case the returned tokens and scopes simply follow the policy for the client. Remember that
the scope is a blank delimited string. This is returned to the client as the body of the response and
the client then uses it as needed.

	Overview
	Prerequisites
	Ways to show or hide OA4MP.
	Creating the token request to OA4MP

