
OS2 Command Line Client Manual
Version 5.1.1

Introduction
This is a fully featured command line client for OA4MP.

Getting it
The latest version of the jar is found at

https://github.com/ncsa/OA4MP/releases/latest/oa2-client.jar

and there is a script to run it too at

https://github.com/ncsa/OA4MP/releases/latest/oa2-client

Running it
Once you have the two you can either edit the script to point to wherever you installed it or can just
manually issue

java jar $path_to_jar/oa2-client.jar
Warning: no configuration file specified. type in 'load --help' to see how to load
one.
No configuration loaded.
client>

and that is the command prompt that shows it is ready and waiting. This has no arguments, so you
would need to load (see below) the configuration you want. Alternately, you can just specify these at
the command line (which is really all the script does):

java jar $path_to_jar/oa2-client.jar -cfg path_to_config_file -name
name_of_config_in_file
client>

No message means everything loaded fine and you are ready to roll.

https://github.com/ncsa/OA4MP/releases/latest/oa2-client.jar
https://github.com/ncsa/OA4MP/releases/latest/oa2-client

Quick reference

Base CLI commands

Each type of command line interface (CLI) in OA4MP is based on the same code, hence there are
things that are common to all of them. These commands are generally prefixed with a /. General things
this does

• prints help on these commands (issue a /? at the prompt).

• manages command history for display or repeat, loading and saving.

• lists the commands in the current components

These are all prefixed with a “/” and refer to running various parts of the CLI, such as the history of
input and re-running commands. This derives from a general command line client interface used
through OA4MP, so these work in other components too (such as the CLI to manage stores). When in
doubt, issue /? to get help. Generally something useful is printed if you supply an argument of -- help
(Note the double hyphen!)

General commands:

 /exit /q = exit this component
 /? = print help
 /commands = list all of the currently available commands.
 /trace on | off = turn *low level* debugging on or off. Use with care.

Command buffer

These are understood at all times and are interpreted before any commands are issued.
/c = clear the command history
/l path = load the command history saved in the path
/w path = write the command history to the given file

Command history:

/h [index] = either print the entire command history (no argument) or re-execute the command at the
given index.
/r = re-evaluate the most recent (0th index) command in the history.
 This is equivalent to issuing /h 0

General commands

These are what does the task for the CLI, such as being an OAuth client or managing a set of stores.
This reference is designed to be quick. It will tell you where to look for things, but the absolute most
correct manual is included with the CLI itself and online. Whenever you are not sure what to do

--help

(Note the double hyphen!) will give you something. It also works for each of the commands below. So
if you were not sure about what the load command did, then you type in

client>load --help

and a bunch of help would issue forth.

Commands to manage state

• load - load a configuration, replacing the current.
• read - read a stored session from a given file
• save_cert - save any cert to a given file
• write - write the current state of this program to a file. This lets you resume where you were

exactly. If you want to test long-term behavior of tokens, write the state to a file and later read
it.

Commands to manage CLI behavior

• echo - echos the input to the consoles. Mostly used in batch mode so the user can see what
commands are executing.

• set_output_on - mostly used in batch files. If set to false, then all output is discarded.
• set_verbose_on - sets the output to be chattier.
• version - the current version of this program
• print_help - print out help about these specific commands (environment, display)

Commands for environment

• clear_env - clear all environment variables
• get_env - print the value of a single variable
• print_env - print all the variables.
• read_env - read a file containing variables
• save_env - save the current environment to a file
• set_env - set a key/value pair

The environment is a set of key/value pairs that is used to pre-process all commands. It may be either
created on the fly or loaded/saved. Any key may be referenced in any command and this is replaced by
its value then executed. The environment is kind of useful at the command line and extremely so in
batch files since you can use it to store sets variables and import them, leaving your batch script free of
hard-coded values.

 E.g.

client>set_env my_file “/opt/cilogon-oa2/var/temp/poloc-test.json”
client>write ${my_file}

Would write the current state to the given file. All of these are suffixed with _env.

OAuth and related commands

Parameter commands

• clear_all_params - clear all parameters.
• get_param - list the parameters for a request
• set_param - set the parameters for a request
• rm_param - remove a parameter for a request

Parameters are just that – parameters sent along additionally with requests to the service. There are 3
places that these may be sent, so there are 3 flags that determine which request these go with.

• -a or -auth is used for parameters sent in the initial (authorization) request.

• -t or -token is used for parameters sent in the token or refresh request.

• -x or -exchange is used for parameters sent as part of a token exchange

Note that whatever you specify is sent so it is always a good idea to enclose whatever you want to send
in quotes.

E.g.

Here is a snippet that is used to set all three requests at once

 set_param -a scope "read:/home/jeff x.y: write:"
 set_param -t scope "read:/home/jeff x.y: write:/data/cluster"
 set_param -x scope "read:/home/jeffy x.y:/abc/def/ghi write:/data/cluster1 x.z:/any"

Information about tokens and such

• asset - print the asset. This is used internally and is sometimes useful, but generally not of
interest.

• claims - print any claims. Note that after each request, this may be updated.
• show_raw_id_token - show the last id token as a JWT. This is apt to be messy, but there it is.
• tokens - show all tokens, along with any information about expiration etc. available.

OAuth commands

• clear - clear the environment. This does not clear set parameters, there is a flag for that.
• exchange - (Requires: get_at). Exchange your access or refresh token
• get_at - (Requires get_grant) Initial get an access and (maybe) an refresh token.
• get_cert - (Requires: get_at) Get a cert. Also, your client must use the getcert scope.
• get_grant - (Requires: set_uri) Processes the callback from the browser after authorization.
• get_rt - (Requires: get_at) Refresh to token. Note this is not the same as the token exchange
• get_user_info - (Requires: get_at) Get whatever is at the userinfo endpoint.
• revoke - (Requires: get_at) Revoke a token
• set_uri - First call that generates the request URI for the service. Paste this into your browser.

Most common sequence
Here is a sample session.

../../../../../../../../../z:/any

client>load
config file = /home/ncsa/dev/csd/config/client-oa2.xml, config
name=dev:command.line
Remember that loading a configuration clears all current state, except parameters.

This lets us see what configuration file is in use and which configuration is currently active.

client>set_uri
URL copied to clipboard:
https://dev.cilogon.org/authorize?
scope=edu.uiuc.ncsa.myproxy.getcert+org.cilogon.userinfo+openid+profile+email&respo
nse_type=code&redirect_uri=https%3A%2F%2Flocalhost%3A9443%2Fclient%2Fnot-
ready&state=WmUFbohL3EnPJyZb5gn90eXPcvb2dz8oSfAaZmaf6aQ&nonce=Clbl8xO6Ey877Ce8LlOmP
pFLvLxjUewmQWOOd9gtYbY&prompt=login&client_id=dev%3Acommand.line

This creates the correct (reallyl messy) url. If your computer has a clipboard available, this is copied to
the clipboard for you. Now you head to your browser, paste this in, hit return and you should get an
error (if your client is properly configured, since OAuth is trying to do a redirect to your client which is
not a browser. Now, highlight the URL in the browser and copy it to the clipboard. Issue the following
to copy it (if there is no clipboard, paste it as the argument to get_grant).
client>get_grant
grant copied to clipboard.
grant=https://dev.cilogon.org/oauth2/1dd5515372b7dd81a915c2b3b73ff452?
type=authzGrant&ts=1612383342334&version=v2.0&lifetime=900000

Now we can get the access token:

client>get_at
default access token =
https://dev.cilogon.org/oauth2/4c78da1852b7920a7e775aac4c3e509c?
type=accessToken&ts=1612383366545&version=v2.0&lifetime=900000
 expires in = 900000 ms.
 valid until Wed Feb 03 14:31:06 CST 2021
default refresh token =
https://dev.cilogon.org/oauth2/20c8421b94be2db2bb06ca880c83b2cb?
type=refreshToken&ts=1612383366545&version=v2.0&lifetime=1000000000
 expires in = 1000000000 ms.
 valid until Mon Feb 15 04:02:46 CST 2021

If you want to see the claims that came back, issue

client>claims
{
 "sub": "http://cilogon.org/serverD/users/45",
 "idp_name": "Google",
 "cert_subject_dn": "/DC=org/DC=cilogon/C=US/O=Google/CN=j g D13115",
 "iss": "https://dev.cilogon.org",
 "given_name": "j",
 "nonce": "Clbl8xO6Ey877Ce8LlOmPpFLvLxjUewmQWOOd9gtYbY",
 "aud": "dev:command.line",
 "idp": "http://google.com/accounts/o8/id",
 "token_id":
"https://dev.cilogon.org/oauth2/idToken/5e713aa845e159799b7b861872199bff/
1612383353886",
 "auth_time": 1612383353,
 "exp": 1612384253,
 "iat": 1612383353,

https://dev.cilogon.org/authorize?scope=edu.uiuc.ncsa.myproxy.getcert+org.cilogon.userinfo+openid+profile+email&response_type=code&redirect_uri=https%3A%2F%2Flocalhost%3A9443%2Fclient%2Fnot-ready&state=WmUFbohL3EnPJyZb5gn90eXPcvb2dz8oSfAaZmaf6aQ&nonce=Clbl8xO6Ey877Ce8LlOmPpFLvLxjUewmQWOOd9gtYbY&prompt=login&client_id=dev%3Acommand.line
https://dev.cilogon.org/authorize?scope=edu.uiuc.ncsa.myproxy.getcert+org.cilogon.userinfo+openid+profile+email&response_type=code&redirect_uri=https%3A%2F%2Flocalhost%3A9443%2Fclient%2Fnot-ready&state=WmUFbohL3EnPJyZb5gn90eXPcvb2dz8oSfAaZmaf6aQ&nonce=Clbl8xO6Ey877Ce8LlOmPpFLvLxjUewmQWOOd9gtYbY&prompt=login&client_id=dev%3Acommand.line
https://dev.cilogon.org/authorize?scope=edu.uiuc.ncsa.myproxy.getcert+org.cilogon.userinfo+openid+profile+email&response_type=code&redirect_uri=https%3A%2F%2Flocalhost%3A9443%2Fclient%2Fnot-ready&state=WmUFbohL3EnPJyZb5gn90eXPcvb2dz8oSfAaZmaf6aQ&nonce=Clbl8xO6Ey877Ce8LlOmPpFLvLxjUewmQWOOd9gtYbY&prompt=login&client_id=dev%3Acommand.line

}

Note that these values are specific to me and how I logged in to CILogon (a popular extension of
OA4MP), so there will be quite a lot of variation in what’s there. Finally, let’s exchange our access
token for another one.

client>exchange
default access token =
https://dev.cilogon.org/oauth2/4212c19f8334f43a9712489fd8cc614f?
type=accessToken&ts=1612383974420&version=v2.0&lifetime=900000
 expires in = 900000 ms.
 valid until Wed Feb 03 14:41:14 CST 2021

Now let’s say you wanted to test that refreshes are working and want to wait quite some time. Just
write your current state:

client>write -m “long term refresh token test” /home/jeff/oa4mp/long_term_test.json

This writes the file and puts the comment (-m flag) in it in case you ever want to read it. This is just a
JSON blob. Later to get it back just fire up the client again and issue

client>read /home/jeff/oa4mp/long_term_test.json
loading configuration from /home/ncsa/dev/csd/config/clients.xml, named
localhost:command.line
done!
OA4MP command line client state stored on Tue Feb 09 08:53:38 CST 2021
long term refresh token test

Note that the message you stored is printed. It also remembered what the last configuration was and
restored that.

	Introduction
	Getting it
	Running it
	Quick reference
	Base CLI commands
	General commands
	OAuth and related commands

	Most common sequence

