
Creating claim sources

What is a claim source?
A claim source is a place to get metadata (called claims in the OIDC world) about a user. There are
many ways of doing this, though the most common is to access an LDAP server. Each of the types of
sources below gives a way to get user metadata.

Lifecyle
The server may (and very probably does) have a default set of claim sources. These will be accessed
every time a request is made to the server. You may add your claims sources to this list say in the
pre_auth phase and never have to worry about it being called. The downside is that everything returned
by your claim source will always be added to the claims returned to the user.

You can also directly get claims and manage them. This is a common occurrence in some cases, such as
user metadata including groups is gotten, then another set of claims is requested based on those.

Handler types

Types
There are 6 general types of claim sources allowed.

1. LDAP. You may specify any LDAP server and supply credentials for it.

2. HTTP headers. If your server passes claims in the headers of the initial request, you may
harvest them.

3. File. If your server stores information about, say, users in a file system

4. NCSA default. Since this was created at the National Center for Supercomputing Applications
there is a specific source for that. Since you must be in the NCSA's VPN to access it, this is of
limited utility outside of the organization.

5. Code. You may write any Java class that extends basic claim source and reference that.
Generally you do not need to do this except in very, very specific cases and should use any
built-in claim sources if at all possible.

6. RESTful calls

Basic construction of a claim source
The basic steps are

https://cilogon.github.io/oa4mp/apidocs/edu/uiuc/ncsa/myproxy/oa4mp/oauth2/claims/BasicClaimsSourceImpl.html

1. Create a script to hold whatever you write. Everything goes in there. Of course, this being QDL
and all, you can run everything

2. Create a configuration stem. You probably want to use the new_template(type) function.

3. Populate specific attributes you need. Each type below has the specifics

4. Issue a create_source call. This will tidy up any missing essential information based on the
type

5. Either add it to the system claims, or invoke it with get_claims(config., username) and
manage it yourself.

Development tools
Be sure you have the following modules loaded in your QDL workspace. This should be in the
configuration:

<modules>
 <module type="java"
 import_on_start="true">
 <class_name>edu.uiuc.ncsa.myproxy.oa4mp.qdl.OA2QDLLoader</class_name>
 </module>
 <module type="java"
 import_on_start="true">
 <class_name>edu.uiuc.ncsa.oa2.qdl.QDLToolsLoader</class_name>
 </module>
</modules>

What does this do to the workspace? Once QDL is up, you'll see it added several test variables:

)vars -m
jwt#test_audience. jwt#test_claims. jwt#test_scopes. jwt#test_xas.

These are samples for audience, claims, scopes and extended attributes.

There are also several modules added

)modules
oa2:/qdl/acl [acl]
oa2:/qdl/jwt [jwt]
oa2:/qdl/oidc/claims [claims]
oa2:/qdl/oidc/client/manage [cm]
oa2:/qdl/oidc/token [tokens]

(If you have other modules, they will show up here too.)

You can print out help for one of the modules e.g. as

)module claims -help
// tons of stuff

And from the modules, there are a lot of functions. To list all of the functions (fully qualified by
module, limiting display with to 72 chars)

)funcs -fq -m -w 72
// tons of stugg

Will spit out the lot of them, but here is the breakdown.

ACL functions – not needed, but loaded if you are doing access control

acl#acl_add(1)
acl#acl_check(0)
acl#acl_reject(1)

Claims specific functions. These are the work horses of this document

claims#create_source(1)
claims#get_claims(2)
claims#in_group(2)
claims#new_template(1)
claims#resolve_templates(3)
claims#template_substitution(2)
claims#template_substitution(3)

You need (in order) new_template, create_source, get_claims

Java Web Token utilities. These will allow you to create JWTs on the fly.
jwt#create_jwt(1)
jwt#create_jwt(2)
jwt#create_keys(0)
jwt#create_keys(1)
jwt#create_keys(2)
jwt#create_skeys(0)
jwt#create_skeys(1)
jwt#create_skeys(2)
jwt#create_uuid(0)
jwt#default_key(0)
jwt#default_key(1)
jwt#get_header(1)
jwt#get_payload(1)
jwt#key_info(0)
jwt#load_keys(1)
jwt#save_keys(1)
jwt#verify_jwt(1)
jwt#verify_jwt(2)

Token utilities. These are very low level and essentially allow you to completely replace any built-in
machinery in OA4MP. These should have their own tutorial but generally are only for real pros with a
burning need.

tokens#at_finish(2)
tokens#at_finish(3)
tokens#at_init(2)
tokens#at_refresh(2)

tokens#id_check_claim(0)
tokens#id_finish(1)
tokens#id_init(1)
tokens#id_refresh(1)
tokens#rt_finish(1)
tokens#rt_init(1)
tokens#rt_refresh(1)

Extremely useful tool

Once you have everything debugged and in your script, you should use the check_syntax(string)
function. The argument is a string! This will run it through the parser looking for syntax errors. So if
you have a QDL script at /home/me/qdl/scripts/my_script.qdl then issue

check_syntax(file_read('/home/me/qdl/scripts/my_script.qdl'))

and either it will return nothing (means everything is ok) or it will return the error string from the
parser. Not quite lint but boy is it helpful at times.

Next step: Open up the examples and have this document for cross-reference. There are many, many
examples and comments.

Reference for Claim Source attributes

General attributes for all claim source objects

name type req? default Description

enabled B N T if this component is enabled. Enabled means it
will be processed,

fail_on_error B N F in the case of some error (such as the
underlying service is unavailable), fail. This
means that the entire transaction is aborted and
the request is rejected. This is a drastic move in
most cases. If this is set to false, then the effect
is that the claims from this source will not be
available

id S N - a unique identifier for this that may be
referenced.

name S N - A name for this. This is not used by the system

name type req? default Description

so it is mostly to help you.

notify_on_fail B N T If there is an error, notify the system
administrators via email.

retry_count I N 1 The number of times the claim source should
retry to get the claims before failing.

retry_wait I N 0 The number of milliseconds in between retries
to wait.

type S Y - This is the type of the claim source. Note that
this must be specified or the entire claim source
is rejected as invalid. Each of the given sources
lists its type below.

key:
B = Boolean
I = integer
N=No
S = String
Y = Yes

For certain claim sources, the retry count and wait will be honored, but that is up to the
implementation. It is used, for instance, in the LDAP claim source for particularly pesky servers.

The function create_source will examine the type of the configuration and assert defaults for all of
these as indicated.

Java Code
Type = 'code'

name type req? default description
java_class S Y -- The full path to the java class

This is the only required attribute.

HTTP Header
Type = 'header'

name type req? default description

prefix S Y OIDC_CLAIM_ Filter prefix for all claims. Any header that
starts with this prefix will be returned.

File System
Type = 'file'

name type req? default description

file_path S Y -- This is the local absolute path on the server to a file
containing attributes about a user. The file must be
accessible to the system at runtime.

claims Stem N -- A stem of the claims. You may either specify this
directly or specify a file_path.

claim_key S N sub The name of the claim that will be used for fetching
information. This defaults to the sub claim – the name
the user used when authenticating.

use_default B N -- If a user is not found, return a default set of claims

default_claim S N -- The name for the default set of claims

Claim file format

The file is a simple JSON object of the form

{
 “username0":{“key0":"value0", “key1":"value1", … [,"comment":["line0","line1",
…]]},
 “username1":{…}
}

Where each username is a login name and the list of key/value pairs is returned as part of the claims.
Comments may be embedded in the file (as a JSON array of strings) or for each entry. Comments are
not returned as part of the claims. See the sample file at test-claims.json.

Caveat. In QDL. If you get the claims directly each time, you may use virtual paths in your file claim
source. If, however, you create the claim source and add it to the claim sources OA4MP has
(effectively handing off the claim source to something outside of QDL) then getting claims will fail
since OA4MP does not understand virtual file paths. Therefore, if you are going to add a file system
source to the claim sources, you must either set the claims property with the claims you want (which
can therefore live in the VFS) or set the file path to the absolute path on the systehm.

NCSA
Type = 'ncsa'

https://github.com/ncsa/OA4MP/blob/master/oa4mp-server-test-oauth2/src/main/resources/test-claims.json

You really do not need to so more than create one of these from the template.

LDAP
This is probably the most complex and flexible of them. This is also why the create_source function
exists: You can set just a few of the attributes you need, and that will fill in all the other default values
for you.

Type = 'ldap'

Name req? Description

auth_type Y The authorization type. Values are none, simple or strong

address Y The address of the server

port N The port. Default is 636

claim_name N The value of the claim to pass in the search. Default is the username
claim, i.e., the name the user used to log in.

search_base Y The path in LDAP where to start this search.

ldap_name N The name of the attribute in LDAP to search on. This defaults to uid.

password ? Only if the authorization type is simple

filter N The search filter.

username ? Only if the authorization type is simple.

search_attributes. N The names in LDAP of the attributes to return. Omitting returns all
LDAP attributes!

groups. N The names of attributes in LDAP that represent groups

rename. N Rename the LDAP attributes as claims. Form is
rename.old_name := new_name
for each claim you want to rename.

lists. N The names of attributes in LDAP that should be treated as lists (so
multi-valued)

context N the name of the LDAP context or object to search. Very necessary when
you need it, but can be ignored most of the time.

address is a comma separated list of addresses. These will be tried consecutively until one of them
works or all of them fail. This allows for fail over servers to be specified and treated as a unit.

Caveat: If you want to rename attributes, you must explicitly list all attributes in search_attributes.
You cannot (at this point) omit the attributes (to just get everything for an entry) and rename some of
them.

Filters

There is a complete syntax for filters which use NPN (Normal Polish Notation). There are two main
ways to create them.

1. Have a very basic match constructed. If you set claim_name and ldap_name then a basic search
filter consisting of a single criterion is created and used

(ldap_name=claims.claim_name)

i.e. the claim_name is taken from the claims.

E.g.

ldap.'claim_name' := 'eppn'
 ldap.'ldap_name' := 'voPersonExternalID';

constructs the query

(voPersonExternalID=bob@bsu.edu)

Assuming that claims.'eppn' == 'bob@bsu.edu';

2. Setting the filter attribute uses that exactly and will ignore creating them as in step 1, even if
those attributes are set.

Example 1

This defines a function that makes a set of simple criteria that can be stuck together with logical
connectors (& or |) to make more or less any filter you want. Then it is used in an example to construct
the specific filter

 // concatenate the arguments, which can be stems:
 criteria(key, op, value) -> reduce(@+, '(' + key + op + value + ')');
 op. := {*:'='}; // sets default value
 op.2 := '<='; // element 2 is inequality, not equality
 keys. := ['uid', 'voPersonExternalID', 'storageQuota'];
 values. := ['user_547', 'bob@bgsu.edu', 100000];
 s := criteria(keys., op., values.);
 s; // display the result
(uid=user_547)(voPersonExternalID=bob@bgsu.edu)(storageQuota<=100000)

So this would be fine

 ldap_cfg. := new_template('ldap');
ldap_cfg.filter := '(|' + s + ')';

http://www.ldapexplorer.com/en/manual/109010000-ldap-filter-syntax.htm

Example 2

Create the following

(|(uid=http://cilogon.org/serverT/users/2604273)(voPersonExternalID=http://
cilogon.org/serverT/users/2604273))

Solution

Define a function to slap together (um, concatenate with +) attributes and values then put (|) around
them:

filter_or(attr, value)->'(|' + reduce(@+, '(' + attr + '=' + value + ')') + ')';

In context you would use this (assuming that claim.sub contained the identifier) as

filter_or(attr, value)->'(|' + reduce(@+, '(' + attr + '=' + value + ')') + ')';
 cfg. := new_template('ldap');
 cfg.port := 636;
 cfg.filter := filter_or(['uid','voPersonExternalID'], claims.'sub');
 // etc., etc., etc.

	What is a claim source?
	Lifecyle
	Handler types
	Types

	Basic construction of a claim source
	Development tools
	Reference for Claim Source attributes
	General attributes for all claim source objects
	Java Code
	HTTP Header
	File System
	Claim file format

	NCSA
	LDAP

