
The OA4MP
Detached/Independent Service
OA4MP as a detached/independent service

Overview

The authentication server (AS) may be replaced in OA4MP by any application. This api allows
your service to use OA4MP to start and manage the code flow. There are 4 calls that respectively
start a flow, then notify OA4MP either if the user has finished authenticating or has cancelled the
flow. The service that provides these calls is the DIService for detached/independent service (your
service is independent of OA4MP and detached in the sense that it can reside anywhere).

The scenario is that your AS is at the /authorize endpoint and manages all authentication. It simply
informs OA4MP about the progress.

Security and access

All access will be via Tomcat. Since this in effect would make everything world readable, so some
form of restriction to access, be it localhost access only or credentials should be used.
The default path to the DI servlet will be http://localhost:8080/oauth2/diService.

The API itself

All access will be via HTTP Get. Technically we should only allow HTTP Post on requests which
may result in changes to the server (e.g. a creating a user) and HTTP Get for information requests,
however, this would make it awkward to use. The aim is to make it simple enough that clients can
hand-code the request and parse the result without having to resort to complex machinery to do so.
All requests are via parameters, all responses are JSON.

Securing the service.
This system presupposes a trust relation and can allow the creation of flows. As such, if it is simply
public facing, a denial of service attack would be easy. There 3 main ways to use this service
securely.

1. Distinguished users.
In this case, the servers the configuration diService element explicity lists users and credentials.
Every request must have an entry. This is of use if the AS services all calls and there is no need for
more than just authentication, usually by a single, dedicated user. The parameters are
oa4mp:di:user for the user name and oa4mp:di:password for the password.

2. Restrict endpoint access
In this case, the endpoint is secured and only accepts requests from specific IP addresses. This
gives a slight performance boost and if the AS is running on a dedicated server is a good option. No
users are needed and every request from the trusted IP is honored.

3. Per Administrative Client
If an admin client has been so flagged, it makes the request using its own (usually RFC 7523)
credentials. This permits fine grained control and excellent security if running the service has to be
public.

API Basic Operation

Making a request
Every request will go to the same address relative endpoint, usually diService, e.g.

 http://your.server.edu:9443/oauth2/diService.

Requests are standard HTTP GET with key=value pairs. One of these is required, "action=XXXX",
where XXXX determines what is to be done by the server. The remaining key/value pairs are
parameters for the call. All arguments in a post or get will be URL encoded but key/value pairs may
be in any order. Required arguments must be present or an error will be returned. Generally
repeated arguments will cause a duplicate argument message to be generated.

Format of a response from the server
The general serialized form for an object (which is always the body of the response and is
urlencoded) is a JSON object of the form:

 {"status" : XXX,
 "key1" : "value1",
 "key2" : "value2",...
 }

Each section below detailing an API call will list what are and are not acceptable values. The status
is always present. The next section details the possible values.

Status Codes and Error Conditions
It may occur that there are errors during the processing of a request, e.g. if the parameters are
incorrect. Rather than confuse server errors with data errors – the bane of RESTful APIs, which this
is not, we implement the following policy: Only actual errors with the servlet itself will result in an
HTTP status code different than 200. E.g. a 404 Not Found error can only have come from the web
server itself and means there is a problem with the request rather than meaning, say, that a user was
not found. The only required value of each response is the status. This will be recorded in the body
of the response according to the following table. All operations can return a duplicate parameter
exception. It is not the task of this servlet to disambiguate or merge conflicting requests. Duplicate
arguments are in general not allowed for any argument, including optional ones. All operations can
return a missing parameter error for a required parameter.

Note: There is an appendix at the end of this document with various tables sorting these for quick
reference.

Value Decimal Hex Comment

OK 0 0x0 Normal return

ActionNotFound 1 0x1 No such action is supported by this
service. Normally this indicates that
the action value was mis-typed.

TransactionNotFound 1048485 0xFFFA5 No such transaction for the given
code or user code was found

DuplicateParameterFound 1048561 0xFFFF1 A duplicate argument was supplied.

InternalError 1048563 0xFFFF3 Some error internal to the server
occurred during processing. Consult
the server logs.

MalformedInputError 1048567 0xFFFF7 An input was of the incorrect format.
E.g. an illegal uri or a string that
cannot be parsed into an integer.

MissingParameterError 1048569 0xFFFF9 A required argument was not found.

Transaction not found 65537 10001 No transaction with the given
identifier could be found

Expired token 65539 10003 The token for this request has expired.

Create transaction failed 65541 10005 General exception when a transaction
cannot be created

Unknown callback 65543 10007 The supplied callback id not in the list
of registered callbacks

Client id missing 65545 10009 No client identifier has been supplied
with this request

No registered callbacks 65547 1000A The client has no callbacks registered.
(Normally this implies an incomplete
registration)

Unknown client 65549 1000C The identifier does not match any
client

Unapproved client 65551 1000E This client has been registered but has
not yet been approved.

Example of a typical error response
{
 "description" : "The given redirect_uri is not valid for this client.",
 "error" : "create_transaction_failed",
 "status" : 65541

}

The API Calls

approveUserCode
What’s it do? Device Code Flow. It will approve the code (allowing the user to get a token). It
may also invalidate a user code, meaning the code is flagged as unusable and any attempts to use it
thereafter will raise an exception. There is no undo for invalidating a user code. Normally you
check the user code (see checkUserCode) before approving it.

Request key/value pairs

Key Value Comment

action approveUserCode Required

approved 0 invalidate
1 approve (default)

Optional. If not present,
approve the code, if 0, cancel
the flow.

auth_time The time of authorization for
the user

Time is in seconds

user_code The user code generated by the
system

Required.

username The name of the user used.

Response key/value pairs

Key Value Comment

status Ok
missing parameter
transaction not found
expired user code

client_id The client id

code The id for the transaction This is base 32 encoded

user_code The user_code passed in This helps the requester identify
this response

Example continuation, approving the user.

Picking up where checkUserCode left off, we assume the user has finished authenticating and the
last step for you is to tell OA4MP this:

https://localhost:9443/oauth2/diService
 ?action=approveUserCode
 &user_code=684B+7344+XE36

 &username=bob@physics.bgsu.edu
 &auth_time=1756766314

which in turn has a response of

{ "status" : 0,
 "user_code" : "684B+7344+XE36"
 "client_id" : "oa4mp:/client_id/cern/87547887",
 "code" : "J5ETCRRZPFUEEVLPI5FXO4KKIY3EQ3RQNFIQ"
}

and at this point, the user can simply get a token from OA4MP directly.

See also: checkUserCode

Note that if you cancel or invalidate a flow it cannot be restarted and the user must restart.

Note that the client ID is returned so your service can more easily display information (if desired) to
the user.

checkUserCode(user_code)
What’s it do: Device Code Flow. This will take the user_code and verify that it is currently active.
This is informational so you can manage logon attempts by the user.

Request key/value pairs.

Key Value Comment

action checkUserCode Required

user_code The user code issued by
OA4MP

Required

Response key/value pairs.

Key Value Comment

status Ok
missing parameter
service unavailable
transaction not found
expired token

The service unavailable
response is if the service does
not have the device flow
enabled.
Expired token refers to the auth
grant for the transaction.

client_id The client id

code The id for the transaction This is base 32 encoded. Do not
alter, just pass it around as
needed.

scope Scopes, if any, in the initial
request

This is a blank delimited list

mailto:%26username%3Dbob@physics.bgsu.edu
https://localhost:9443/oauth2/device?user_code=684B+7344+XE36

user_code The user_code passed in This helps the requester identify
this response

Example. Using the device code flow

Prerequisites

In this example, your service uses a reverse proxy lookup, such as Apache. The entire service has
user-facing address at https://oa4mp.physics.bgsu.edu and OA4MP is deployed on localhost:9443.
Access to the DI Service is restricted to the IP address of your server only and no other
authentication is needed.

External address Internal address Description
https://hadron.physics.bgsu.edu The general, public address for

your service
https://hadron.physics.bgsu.edu/
authorize --

The AS written in e.g. PHP or
python. This handles device
flow authentication

https://hadron.physics.bgsu.edu/token https://localhost:9443/oauth2/token The OA4MP token endpoint

https://oa4mp.physics.bgsu.edu/
device_authorization

https://localhost:9443/oauth2/
device_authorization

The device authorization
endpoint

… other standard endpoint … their OA4MP addresses

The user starts by making a request to the device authorization, which is forwarded by Apache. The
user gets a response with the user_code:

https://hadron.physics.bgsu.edu/authorize?user_code=684B+7344+XE36

This URI is to your service and is configured in the server configuration in the deviceFlowServlet
element, a typical example being:

 <deviceFlowServlet
 verificationURI="https://hadron.physics.bgsu.edu/authorize"
 interval="5"
 codeChars="0123456789ABCDEFX"
 codeLength="12"
 codeSeparator="+"
 codePeriodLength="4"
 />

The URL to request this is in OA4MP well-known page, but the configured verification URI can be
anywhere. Once the user comes to your service, you can read the user_code and query OA4MP to
get the client ID, scopes etc (linefeeds added for clarity):

https://localhost:9443/oauth2/diService
 ?action=checkUserCode
 &user_code=684B+7344+XE36

{ "status" : 0,
 "user_code" : "684B+7344+XE36"
 "client_id" : "oa4mp:/client_id/cern/87547887",

https://localhost:9443/oauth2/device?user_code=684B+7344+XE36
https://localhost:9443/oauth2/device?user_code=684B+7344+XE36
https://oa4mp.physics.bgsu.edu/oauth2/device_authorization
https://oa4mp.physics.bgsu.edu/oauth2/device_authorization
https://oa4mp.physics.bgsu.edu/
https://oa4mp.physics.bgsu.edu/
https://oa4mp.physics.bgsu.edu/
https://oa4mp.physics.bgsu.edu/

 "scope" : ["write:/", "read:/public/fermilab/grant_3456/data"]
 "code" : "J5ETCRRZPFUEEVLPI5FXO4KKIY3EQ3RQNFIQ"
}

In short everything you need to do authentication and put up a consent page. When the user has
completed authentication (or has cancelled it), yo would need to notify OA4MP.

See also: approveUserCode

finishAuthCodeFlow
What’s it do? Authorization Code Flow. This sets the user’s logon information and signals that
authorization is finished. It returns the redirect for the user’s browser.

Request key/value pairs

Key Req? Value Comment

action Y finishAuthCodeFlow Required

approved N 0 invalidate
1 approve (default)

If the user cancels then
setting this to 0 will
cancel the flow.

auth_time N The timestamp when the user
authenticated

This is in seconds

myproxy_info N The username MyProxy expects When getting x509
certs only. This is a
very specific use and
unless you are sure
you need it, ignore this.

code Y The authorization grant This is the unique
identifier for the
transaction

username Y Name of the user at authorization

Response key/value pairs

Key Value Comment

status Ok,
missing argument,
expired token
transaction not found
QDL error
QDL runtime error

Missing argument is if the code
is missing

redirect_uri The full redirect for the user’s
browser.

You set this as a redirect in the
response to the user’s initial
request.

See also: startAuthCodeFlow

Note that if you invalidate a flow it cannot be restarted and the user must restart.

Example. Finishing the flow

This finishes the flow started in the startAuthCodeFlow example. The assumption is that the user
has successfully authenticated, you have done everything that is needed and now the very last step
for you is to tell OA4MP who the user is and get the correct redirect URL so you can reidrect the
user’s browser. You construct the following call (line breaks added for clarity):

http://your.server.edu:9443/oauth2/diService
 ?action=finishAuthCodeFlow
 &code=JMYVIR3HHFBUMVKFGB3FO2RVSKZLXO6BZIZ2U6MTUKMZFTGO
 &username=bob@bgsu.edu
 &auth_time=1756732764

Getting a response of

{ "status": 0,
 "redirect_uri": "https://service.physics.bgsu.edu?code=
JMYVIR3HHFBUMVKFGB3FO2RVSKZLXO6BZIZ2U6MTUKMZFTGO&state=
2mcyalWBRuMb3agPpLzF8g96"
}

In the response to the client, set the URL as the redirect.

startAuthCodeFlow
What’s it do: Authorization Code Flow. This is the initial request that creates the transaction. This
returns the code (the unique identifier for this flow) and other information.

Nota Bene: The request to your service is the standard OAuth request and may have any number
of parameters based on what the user needs. This table contains the additional parameters to use
the API. Add these to the request, but pass along everything else.

You will still get errors for the OAuth flow if there are any. E.g. the client is configured to require
certain scopes and the request is missing these. You will need the code later to finish starting the
authorization code flow. Generally, you get the request from a client, change the address to OA4MP
and add the action plus any credentials.

Request key/value pairs.

Key Req? Value Comment

action Y startAuthCodeFlow Required

oa4mp:di:user N Only needed if the system has users
configured for this service

oa4mp:di:password N “ “ “

Response key/value pairs.

Key Value Comment

status ok
missing argument

missing client id
no scopes
malformed scope
malformed input
unknown client
unapproved client
create transaction failed
internal error

code The authorization grant This is base 32 encoded. Do not
alter this, just pass it along as
needed.

scope JSON array This is the set of scopes that the
client is actually allowed. It
may not be the same as what
was passed in.

state Echos back passed in state This is so clients can set a value
to track transactions

See also: finishAuthCodeFlow

Example. Servicing a request.

Your service resides at

http://your.server.edu:9443/oauth2/a uthorize

And it gets the following request for OA4MP (URL decoded, linefeeds added for readability):

http://your.server.edu:9443/oauth2/authorize
?response_type=code
&scope=org.cilogon.userinfo openid profile email
&state=2mcyalWBRuMb3agPpLzF8g96
&...

Before starting to authenticate the user, your service in turn rewrites this as

http://your.server.edu:9443/oauth2/diService
?response_type=code
&scope=org.cilogon.userinfo openid profile email
&state=2mcyalWBRuMb3agPpLzF8g96
&…
&action=startAuthCodeFlow

(possibly adding DI username and password if needed) and calls the DI service. Your request gets a
response of

{"status" : 0,
 "code" : "JMYVIR3HHFBUMVKFGB3FO2RVSKZLXO6BZIZ2U6MTUKMZFTGO",
 "state" : "2mcyalWBRuMb3agPpLzF8g96"
 "scope" : ["org.cilogon.userinfo","openid","profile","email"]
}

http://your.server.edu:9443/oauth2/diService
http://your.server.edu:9443/oauth2/authorize
http://your.server.edu:9443/oauth2/diService

This means that the flow transaction has been created in OA4MP. All the information needed to put
up the consent page for your AS is returned. Later, once the user has successfully authenticated, you
would use the code in the finishAuthCodeFlow call.

Note that the initial request may be very long. The contract is to send it in toto to the DI Service and
let OA4MP decide what to do with it. Your service just adds parameters and changes the address.

 Appendix
The basic philosophy is that even number indicate some sort of success + information, odd numbers
represent that an error has happened.

List of success codes
NAME Hex Decimal
STATUS_OK 0x0 0

Alphabetical table of error codes
NAME Hex Decimal
STATUS_ACTION_NOT_FOUND 0x1 1
STATUS_CLIENT_NOT_FOUND 0xFFFFF 1048575
STATUS_CREATE_TRANSACTION_FAILED 0x10005 65541
STATUS_DUPLICATE_ARGUMENT 0xFFFF1 1048561
STATUS_EXPIRED_TOKEN 0x10003 65539
STATUS_INTERNAL_ERROR 0xFFFF3 1048563
STATUS_MALFORMED_INPUT 0xFFFF7 1048567
STATUS_MALFORMED_SCOPE 0x10013 65555
STATUS_MISSING_ARGUMENT 0xFFFF9 1048569
STATUS_MISSING_CLIENT_ID 0x10009 65545
STATUS_NO_SCOPES 0x10011 65553
STATUS_PAIRWISE_ID_MISMATCH 0x100003 1048579
STATUS_QDL_ERROR 0x100007 1048583
STATUS_QDL_RUNTIME_ERROR 0x100009 1048585
STATUS_SERVICE_UNAVAILABLE 0x10015 65557
STATUS_TRANSACTION_NOT_FOUND 0x10001 65537
STATUS_TRANSACTION_NOT_FOUND 0xFFFA5 1048485
STATUS_UNAPPROVED_CLIENT 0x1000F 65551
STATUS_UNKNOWN_CLIENT 0x1000D 65549

Error codes sorted by numeric value:

Hex Name Decimal
0x1 STATUS_ACTION_NOT_FOUND 1
0x10001 STATUS_TRANSACTION_NOT_FOUND 65537
0x10003 STATUS_EXPIRED_TOKEN 65539
0x10005 STATUS_CREATE_TRANSACTION_FAILED 65541
0x10009 STATUS_MISSING_CLIENT_ID 65545
0x1000D STATUS_UNKNOWN_CLIENT 65549
0x1000F STATUS_UNAPPROVED_CLIENT 65551
0x10011 STATUS_NO_SCOPES 65553
0x10013 STATUS_MALFORMED_SCOPE 65555
0x10015 STATUS_SERVICE_UNAVAILABLE 65557
0xFFFA5 STATUS_TRANSACTION_NOT_FOUND 1048485
0xFFFF1 STATUS_DUPLICATE_ARGUMENT 1048561
0xFFFF3 STATUS_INTERNAL_ERROR 1048563
0xFFFF7 STATUS_MALFORMED_INPUT 1048567
0xFFFF9 STATUS_MISSING_ARGUMENT 1048569
0xFFFFF STATUS_CLIENT_NOT_FOUND 1048575

0x100007 STATUS_QDL_ERROR 1048583
0x100009 STATUS_QDL_RUNTIME_ERROR 1048585

	OA4MP as a detached/independent service
	Securing the service.
	1. Distinguished users.
	2. Restrict endpoint access
	3. Per Administrative Client

	API Basic Operation
	Making a request
	Format of a response from the server
	Status Codes and Error Conditions

	The API Calls
	approveUserCode
	Request key/value pairs
	Response key/value pairs

	checkUserCode(user_code)
	Request key/value pairs.
	Response key/value pairs.

	finishAuthCodeFlow
	Request key/value pairs
	Response key/value pairs

	startAuthCodeFlow
	Request key/value pairs.
	Response key/value pairs.

	Appendix
	List of success codes
	Alphabetical table of error codes
	Error codes sorted by numeric value:

