
Authentication in OA4MP
Authentication – the means by which users are identified as valid1 -- is not as simple as one would
like in OA4MP. Since it is to be “open authorization for many people”, it does not, in fact, have a
native concept of a user, but relies on some added mechanism. This permits institutions to use their
existing infrastructure with OA4MP rather than having to give every user yet another set of
credentials on an OA4MP server. There are 4 main ways this integration can be done.

1. Proxy case . Use a proxy to a trusted OAuth service that has all of your users. Their login is
accepted as a valid authentication on your server, effectively allowing you to make your
system and an extension of theirs. A very common use case is to get a client on CILogon
which gives access to most major academic and educational research institutions. Logins to
your site are redirected to the proxy site and if successful there, the user is accepted in
OA4MP.

2. Header case . Configure OA4MP to use an HTTP header from a web server. The standard is
the REMOTE_USER header, but you may use any other header of your choice). Most
commonly if Tomcat is hosting OA4MP, then Tomcat users can be accepted as valid
OA4MP users. This also works with reverse proxies such as Apache or Nginx. Note that
since it is easy to forge headers, you must manage the trust relation with the authenticating
service.

3. Extension case . Extend OA4MP (in Java) directly to use your existing user management
system. In this case there is already a system in place. Note that the default “out of the box”
behavior for OA4MP is to reject all requests.

4. Independent case . Write your own Authentication Service (AS) which is wholly independent
of OA4MP then use callouts to OA4MP to notify it of progress. This lets you deploy your
service along with OA4MP. CILogon is a famous example of this. Note that your
application is wholly responsible for handling user logins in a specification compliant way.

5. Dedicated issuer case . Write your own service that handles all requests up to and including
token issuance. OA4MP then may be used for all subsequent OAuth token calls (such as
refreshes, exchanges, token introspection etc.). You may handle vetting requests and
authentication (if any) in any way you deem fit, giving enormous flexibility in this case.
OA4MP just mints (i.e. issues) tokens and then manages them. This is of particular interest
to institutions that are replacing their X509 certificate infrastructure with tokens.

You should also read the documentation for configuring the authorizationServlet.

1 In OA4MP, authorization – what a user is allowed to do – is set by policies.

https://oa4mp.org/server/manuals/using-proxies.html
https://oa4mp.org/server/configuration/authorization-servlet-configuration.html
https://oa4mp.org/pdf/oa4mp_as_dedicated_issuer.pdf
https://oa4mp.org/pdf/DIService-reference.pdf
https://oa4mp.org/pdf/java-extension-to-oa4mp.pdf
https://oa4mp.org/pdf/Using_headers_for_authentication.pdf

6.

